Properties

Label 10.2.813838722612544.1
Degree $10$
Signature $[2, 4]$
Discriminant $8.138\times 10^{14}$
Root discriminant \(30.98\)
Ramified primes $2,17,1373$
Class number $2$
Class group [2]
Galois group $S_{6}$ (as 10T32)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + 9*x^8 - 8*x^7 + 26*x^6 - 19*x^5 + 26*x^4 - 17*x^3 + 10*x^2 - 14*x + 3)
 
gp: K = bnfinit(y^10 - y^9 + 9*y^8 - 8*y^7 + 26*y^6 - 19*y^5 + 26*y^4 - 17*y^3 + 10*y^2 - 14*y + 3, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - x^9 + 9*x^8 - 8*x^7 + 26*x^6 - 19*x^5 + 26*x^4 - 17*x^3 + 10*x^2 - 14*x + 3);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - x^9 + 9*x^8 - 8*x^7 + 26*x^6 - 19*x^5 + 26*x^4 - 17*x^3 + 10*x^2 - 14*x + 3)
 

\( x^{10} - x^{9} + 9x^{8} - 8x^{7} + 26x^{6} - 19x^{5} + 26x^{4} - 17x^{3} + 10x^{2} - 14x + 3 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(813838722612544\) \(\medspace = 2^{6}\cdot 17^{3}\cdot 1373^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.98\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}17^{1/2}1373^{1/2}\approx 242.5193486120076$
Ramified primes:   \(2\), \(17\), \(1373\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{23341}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{41}a^{9}-\frac{4}{41}a^{8}-\frac{20}{41}a^{7}+\frac{11}{41}a^{6}-\frac{7}{41}a^{5}+\frac{2}{41}a^{4}+\frac{20}{41}a^{3}+\frac{5}{41}a^{2}-\frac{5}{41}a+\frac{1}{41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{9}{41}a^{9}+\frac{5}{41}a^{8}+\frac{66}{41}a^{7}+\frac{17}{41}a^{6}+\frac{142}{41}a^{5}-\frac{23}{41}a^{4}+\frac{98}{41}a^{3}-\frac{78}{41}a^{2}-\frac{4}{41}a-\frac{73}{41}$, $\frac{3}{41}a^{9}-\frac{12}{41}a^{8}+\frac{22}{41}a^{7}-\frac{90}{41}a^{6}+\frac{61}{41}a^{5}-\frac{158}{41}a^{4}+\frac{101}{41}a^{3}+\frac{15}{41}a^{2}+\frac{67}{41}a-\frac{38}{41}$, $\frac{1}{41}a^{9}-\frac{4}{41}a^{8}+\frac{21}{41}a^{7}-\frac{30}{41}a^{6}+\frac{75}{41}a^{5}-\frac{39}{41}a^{4}+\frac{20}{41}a^{3}+\frac{46}{41}a^{2}-\frac{46}{41}a+\frac{1}{41}$, $\frac{3}{41}a^{9}-\frac{12}{41}a^{8}+\frac{22}{41}a^{7}-\frac{90}{41}a^{6}+\frac{61}{41}a^{5}-\frac{158}{41}a^{4}+\frac{101}{41}a^{3}+\frac{15}{41}a^{2}+\frac{149}{41}a-\frac{38}{41}$, $a^{8}+7a^{6}+12a^{4}-2a^{3}-8a+1$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4859.45004706 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 4859.45004706 \cdot 2}{2\cdot\sqrt{813838722612544}}\cr\approx \mathstrut & 1.06193372156 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + 9*x^8 - 8*x^7 + 26*x^6 - 19*x^5 + 26*x^4 - 17*x^3 + 10*x^2 - 14*x + 3)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - x^9 + 9*x^8 - 8*x^7 + 26*x^6 - 19*x^5 + 26*x^4 - 17*x^3 + 10*x^2 - 14*x + 3, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - x^9 + 9*x^8 - 8*x^7 + 26*x^6 - 19*x^5 + 26*x^4 - 17*x^3 + 10*x^2 - 14*x + 3);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - x^9 + 9*x^8 - 8*x^7 + 26*x^6 - 19*x^5 + 26*x^4 - 17*x^3 + 10*x^2 - 14*x + 3);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_6$ (as 10T32):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for $S_{6}$
Character table for $S_{6}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 6 siblings: 6.2.373456.1, 6.2.50864920163284.1
Degree 12 siblings: data not computed
Degree 15 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: 6.2.373456.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.3.0.1}{3} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.5.0.1}{5} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ R ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.5.0.1}{5} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.9.6.1$x^{9} + 3 x^{7} + 9 x^{6} + 3 x^{5} - 26 x^{3} + 9 x^{2} - 27 x + 29$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
\(17\) Copy content Toggle raw display 17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.0.1$x^{4} + 7 x^{2} + 10 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.2.2$x^{4} - 272 x^{2} + 867$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
\(1373\) Copy content Toggle raw display $\Q_{1373}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $6$$2$$3$$3$