# Properties

 Label 10.2.75049519552.1 Degree $10$ Signature $[2, 4]$ Discriminant $2^{6}\cdot 7^{3}\cdot 43^{4}$ Root discriminant $12.23$ Ramified primes $2, 7, 43$ Class number $1$ Class group Trivial Galois group $S_5$ (as 10T13)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 3, 1, 4, 0, -2, -3, -2, -1, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 - 2*x^8 - 3*x^7 - 2*x^6 + 4*x^4 + x^3 + 3*x^2 - 2*x - 1)

gp: K = bnfinit(x^10 - x^9 - 2*x^8 - 3*x^7 - 2*x^6 + 4*x^4 + x^3 + 3*x^2 - 2*x - 1, 1)

## Normalizeddefining polynomial

$$x^{10} - x^{9} - 2 x^{8} - 3 x^{7} - 2 x^{6} + 4 x^{4} + x^{3} + 3 x^{2} - 2 x - 1$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $10$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[2, 4]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$75049519552=2^{6}\cdot 7^{3}\cdot 43^{4}$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $12.23$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 7, 43$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{31} a^{9} + \frac{15}{31} a^{8} - \frac{10}{31} a^{7} - \frac{8}{31} a^{6} - \frac{6}{31} a^{5} - \frac{3}{31} a^{4} - \frac{13}{31} a^{3} + \frac{10}{31} a^{2} + \frac{8}{31} a + \frac{2}{31}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $5$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$46.5119692301$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

$S_5$ (as 10T13):

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A non-solvable group of order 120 The 7 conjugacy class representatives for $S_5$ Character table for $S_5$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Sibling fields

 Degree 5 sibling: data not computed Degree 6 sibling: data not computed Degree 10 sibling: data not computed Degree 12 sibling: data not computed Degree 15 sibling: data not computed Degree 20 siblings: data not computed Degree 24 sibling: data not computed Degree 30 siblings: data not computed Degree 40 sibling: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ R ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0Trivial[\ ] 2.3.0.1x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.3$x^{6} + 2 x^{4} + x^{2} - 7$$2$$3$$6$$C_6$$[2]^{3} 7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3} 7.6.3.1x^{6} - 14 x^{4} + 49 x^{2} - 1372$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$43$43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2} 43.4.2.2x^{4} - 43 x^{2} + 5547$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
43.4.2.2$x^{4} - 43 x^{2} + 5547$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$