Normalized defining polynomial
\( x^{10} - 15 x^{8} - 35 x^{7} + 60 x^{6} - 18 x^{5} - 975 x^{4} - 3825 x^{3} + 12150 x^{2} + 19125 x + 37800 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6568408355712890625=3^{16}\cdot 5^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{27} a^{7} + \frac{1}{9} a^{5} + \frac{7}{27} a^{4} + \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{135} a^{8} - \frac{1}{9} a^{6} - \frac{4}{27} a^{5} + \frac{4}{9} a^{4} + \frac{1}{5} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{97055303366745} a^{9} - \frac{165067802054}{97055303366745} a^{8} - \frac{111872449699}{19411060673349} a^{7} - \frac{3177711475396}{19411060673349} a^{6} + \frac{3810797738735}{19411060673349} a^{5} - \frac{2565816367013}{97055303366745} a^{4} - \frac{3270721044662}{10783922596305} a^{3} + \frac{2043481107404}{6470353557783} a^{2} + \frac{665200340228}{6470353557783} a - \frac{285721402199}{2156784519261}$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 267506.739891 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 360 |
| The 7 conjugacy class representatives for $\PSL(2,9)$ |
| Character table for $\PSL(2,9)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 15 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $5$ | 5.5.8.1 | $x^{5} - 5 x^{4} + 105$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.1 | $x^{5} - 5 x^{4} + 105$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |