Normalized defining polynomial
\( x^{10} - 2 x^{9} + 9 x^{8} - 24 x^{7} - 6 x^{6} + 36 x^{5} + 66 x^{4} + 264 x^{3} + 117 x^{2} + 78 x - 219 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6499837226778624=2^{24}\cdot 3^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{4} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{8} a^{5} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{32} a^{6} - \frac{1}{16} a^{5} - \frac{1}{32} a^{4} - \frac{1}{8} a^{3} + \frac{3}{32} a^{2} + \frac{7}{16} a + \frac{5}{32}$, $\frac{1}{64} a^{7} - \frac{1}{64} a^{6} - \frac{3}{64} a^{5} + \frac{3}{64} a^{4} - \frac{1}{64} a^{3} - \frac{15}{64} a^{2} - \frac{13}{64} a - \frac{3}{64}$, $\frac{1}{256} a^{8} - \frac{1}{128} a^{6} - \frac{3}{64} a^{5} + \frac{1}{32} a^{4} + \frac{1}{32} a^{3} - \frac{27}{128} a^{2} + \frac{13}{64} a + \frac{31}{256}$, $\frac{1}{256} a^{9} - \frac{1}{128} a^{7} - \frac{1}{64} a^{6} - \frac{1}{32} a^{5} - \frac{11}{128} a^{3} + \frac{3}{64} a^{2} - \frac{49}{256} a - \frac{3}{32}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138754.157264 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 360 |
| The 7 conjugacy class representatives for $\PSL(2,9)$ |
| Character table for $\PSL(2,9)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 15 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.11.19 | $x^{4} + 22$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.4.11.12 | $x^{4} + 26$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.9.18.2 | $x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2:C_2$ | $[3/2, 5/2]_{2}$ |