Normalized defining polynomial
\( x^{10} - 5 x^{9} - 9690 x^{8} + 38790 x^{7} + 37577805 x^{6} - 112686681 x^{5} - 72901398000 x^{4} + 149531844600 x^{3} + 70745098715400 x^{2} - 67385222095700 x - 27481198710005660 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63613148112891287123047110351562500000000=2^{8}\cdot 3^{9}\cdot 5^{18}\cdot 13^{9}\cdot 199^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12{,}032.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{39} a^{3} + \frac{5}{39} a^{2} + \frac{4}{39} a - \frac{6}{13}$, $\frac{1}{117} a^{4} + \frac{1}{117} a^{3} - \frac{1}{39} a^{2} + \frac{31}{117} a + \frac{7}{117}$, $\frac{1}{1521} a^{5} + \frac{4}{1521} a^{4} + \frac{1}{169} a^{3} + \frac{106}{1521} a^{2} - \frac{20}{1521} a + \frac{200}{507}$, $\frac{1}{9126} a^{6} - \frac{1}{3042} a^{5} + \frac{11}{3042} a^{4} - \frac{61}{9126} a^{3} + \frac{55}{1521} a^{2} - \frac{50}{1521} a + \frac{500}{4563}$, $\frac{1}{9126} a^{7} + \frac{10}{4563} a^{4} + \frac{1}{1014} a^{3} + \frac{53}{507} a^{2} - \frac{22}{4563} a + \frac{73}{507}$, $\frac{1}{355914} a^{8} - \frac{2}{177957} a^{7} + \frac{7}{355914} a^{6} - \frac{7}{355914} a^{5} - \frac{283}{177957} a^{4} + \frac{1139}{355914} a^{3} - \frac{4135}{177957} a^{2} + \frac{3850}{177957} a - \frac{14500}{177957}$, $\frac{1}{5858178767928564610701778517466} a^{9} - \frac{2424399305877956053237271}{5858178767928564610701778517466} a^{8} + \frac{89402938707881015604926278}{2929089383964282305350889258733} a^{7} - \frac{40213345695241499277812881}{2929089383964282305350889258733} a^{6} + \frac{57056083366226339939400209}{450629135994504970053982962882} a^{5} - \frac{11941511496483330956185011395}{5858178767928564610701778517466} a^{4} + \frac{14609150071633969714372855093}{2929089383964282305350889258733} a^{3} - \frac{365354504670247549379156776786}{2929089383964282305350889258733} a^{2} - \frac{962147883662959415830591966517}{2929089383964282305350889258733} a - \frac{490857257717102009131146954395}{2929089383964282305350889258733}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{2283960}$, which has order $146173440$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1276041451.9892254 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 10T5):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $F_{5}\times C_2$ |
| Character table for $F_{5}\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{7761}) \), 5.1.72295031250000.26 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| $5$ | 5.5.9.2 | $x^{5} + 55$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.5.9.2 | $x^{5} + 55$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| $13$ | 13.10.9.1 | $x^{10} - 13$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| $199$ | 199.2.1.2 | $x^{2} + 398$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 199.4.2.1 | $x^{4} + 2189 x^{2} + 1425636$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 199.4.2.1 | $x^{4} + 2189 x^{2} + 1425636$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |