Normalized defining polynomial
\( x^{10} - 5700x^{7} + 10830000x^{4} - 6859000000x - 47502004500 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(6346238713644431953125000000000000\) \(\medspace = 2^{12}\cdot 3^{14}\cdot 5^{19}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(2400.22\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{31/20}3^{235/108}5^{211/100}19^{8/9}\approx 13069.939519129885$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{57}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{855}a^{4}-\frac{2}{9}a$, $\frac{1}{1710}a^{5}-\frac{1}{9}a^{2}$, $\frac{1}{97470}a^{6}+\frac{1}{5130}a^{5}-\frac{1}{2565}a^{4}-\frac{1}{513}a^{3}-\frac{1}{27}a^{2}+\frac{2}{27}a$, $\frac{1}{2924100}a^{7}-\frac{1}{7695}a^{4}-\frac{1}{2}a^{2}+\frac{1}{81}a$, $\frac{1}{55557900}a^{8}-\frac{2}{29241}a^{5}-\frac{1}{114}a^{3}+\frac{613}{1539}a^{2}+\frac{1}{3}a$, $\frac{1}{1166715900}a^{9}+\frac{1}{1166715900}a^{8}+\frac{1}{6140610}a^{7}-\frac{29}{6140610}a^{6}-\frac{173}{614061}a^{5}-\frac{101}{323190}a^{4}-\frac{25}{64638}a^{3}+\frac{11044}{32319}a^{2}-\frac{314}{1701}a-\frac{2}{7}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{70\!\cdots\!57}{194452650}a^{9}+\frac{21\!\cdots\!59}{388905300}a^{8}+\frac{16\!\cdots\!23}{20468700}a^{7}-\frac{17\!\cdots\!20}{204687}a^{6}-\frac{26\!\cdots\!33}{2046870}a^{5}-\frac{10\!\cdots\!91}{53865}a^{4}+\frac{23\!\cdots\!75}{21546}a^{3}+\frac{35\!\cdots\!23}{21546}a^{2}+\frac{13\!\cdots\!62}{567}a+\frac{80\!\cdots\!42}{7}$, $\frac{11\!\cdots\!97}{583357950}a^{9}-\frac{12\!\cdots\!53}{1166715900}a^{8}+\frac{36\!\cdots\!41}{61406100}a^{7}-\frac{36\!\cdots\!61}{3070305}a^{6}+\frac{19\!\cdots\!42}{3070305}a^{5}-\frac{55\!\cdots\!78}{161595}a^{4}+\frac{15\!\cdots\!27}{64638}a^{3}-\frac{82\!\cdots\!01}{64638}a^{2}+\frac{11\!\cdots\!00}{1701}a-\frac{12\!\cdots\!43}{7}$, $\frac{99\!\cdots\!17}{55557900}a^{9}-\frac{91\!\cdots\!23}{6173100}a^{8}-\frac{21\!\cdots\!57}{292410}a^{7}-\frac{17\!\cdots\!07}{29241}a^{6}+\frac{35\!\cdots\!73}{16245}a^{5}+\frac{23\!\cdots\!41}{3078}a^{4}+\frac{43\!\cdots\!21}{3078}a^{3}+\frac{35\!\cdots\!35}{171}a^{2}-\frac{53\!\cdots\!12}{81}a-43\!\cdots\!09$, $\frac{16\!\cdots\!17}{64817550}a^{9}+\frac{47\!\cdots\!97}{194452650}a^{8}+\frac{18\!\cdots\!67}{10234350}a^{7}-\frac{64\!\cdots\!95}{45486}a^{6}-\frac{31\!\cdots\!97}{2046870}a^{5}-\frac{78\!\cdots\!93}{53865}a^{4}+\frac{60\!\cdots\!19}{3591}a^{3}+\frac{23\!\cdots\!91}{10773}a^{2}+\frac{14\!\cdots\!76}{567}a+\frac{80\!\cdots\!16}{7}$, $\frac{41\!\cdots\!91}{194452650}a^{9}-\frac{22\!\cdots\!63}{388905300}a^{8}+\frac{10\!\cdots\!91}{1705725}a^{7}-\frac{12\!\cdots\!86}{1023435}a^{6}+\frac{43\!\cdots\!43}{2046870}a^{5}-\frac{86\!\cdots\!56}{5985}a^{4}+\frac{17\!\cdots\!91}{21546}a^{3}-\frac{76\!\cdots\!96}{10773}a^{2}-\frac{54\!\cdots\!93}{189}a+\frac{31\!\cdots\!88}{7}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 35499371082600 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 35499371082600 \cdot 2}{2\cdot\sqrt{6346238713644431953125000000000000}}\cr\approx \mathstrut & 2.77806192194579 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.10.0.1}{10} }$ | R | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.10.12.3 | $x^{10} + 2 x^{3} + 2$ | $10$ | $1$ | $12$ | $(C_2^4 : C_5):C_4$ | $[8/5, 8/5, 8/5, 8/5]_{5}^{4}$ |
\(3\) | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.3.4.1 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
3.6.10.9 | $x^{6} + 3 x^{5} + 9 x^{2} + 9 x + 12$ | $6$ | $1$ | $10$ | $C_3^2:D_4$ | $[9/4, 9/4]_{4}^{2}$ | |
\(5\) | 5.10.19.8 | $x^{10} + 15 x^{5} + 25 x^{3} + 25 x^{2} + 25 x + 105$ | $10$ | $1$ | $19$ | $C_5^2 : C_4$ | $[7/4, 9/4]_{4}$ |
\(19\) | $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |