# Properties

 Label 10.2.54470700288.2 Degree $10$ Signature $[2, 4]$ Discriminant $2^{8}\cdot 3^{3}\cdot 199^{3}$ Root discriminant $11.85$ Ramified primes $2, 3, 199$ Class number $1$ Class group Trivial Galois group $S_5$ (as 10T13)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, -4, 4, -4, 0, 0, -2, 0, 0, 0, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^6 - 4*x^3 + 4*x^2 - 4*x + 4)

gp: K = bnfinit(x^10 - 2*x^6 - 4*x^3 + 4*x^2 - 4*x + 4, 1)

## Normalizeddefining polynomial

$$x^{10} - 2 x^{6} - 4 x^{3} + 4 x^{2} - 4 x + 4$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $10$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[2, 4]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$54470700288=2^{8}\cdot 3^{3}\cdot 199^{3}$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $11.85$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3, 199$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{4}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $5$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: $$\frac{1}{4} a^{9} + \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$$,  $$\frac{1}{2} a^{9} + \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - a^{4} - a^{2} - a + 1$$,  $$\frac{1}{2} a^{9} + \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - 2 a^{2} + 2 a - 2$$,  $$\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - a^{2} + 1$$,  $$\frac{1}{4} a^{9} + \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - a + 1$$ magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$33.313495222$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

$S_5$ (as 10T13):

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A non-solvable group of order 120 The 7 conjugacy class representatives for $S_5$ Character table for $S_5$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Sibling fields

 Degree 5 sibling: data not computed Degree 6 sibling: data not computed Degree 10 sibling: data not computed Degree 12 sibling: data not computed Degree 15 sibling: data not computed Degree 20 siblings: data not computed Degree 24 sibling: data not computed Degree 30 siblings: data not computed Degree 40 sibling: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.8.1$x^{10} - 2 x^{5} + 4$$5$$2$$8$$F_5$$[\ ]_{5}^{4} 3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3} 3.6.3.1x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
199Data not computed