Normalized defining polynomial
\( x^{10} - 5 x^{9} + 5 x^{8} + 10 x^{7} - 15 x^{6} + 3572393 x^{5} - 8930995 x^{4} + 53586070 x^{3} - 71448085 x^{2} + 62517065 x + 3190497936581 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(513677063670173890032012500000000=2^{8}\cdot 5^{11}\cdot 11^{8}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1866.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{11} a^{4} - \frac{2}{11} a^{3} - \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{55} a^{5} - \frac{1}{11} a^{3} + \frac{1}{11} a + \frac{24}{55}$, $\frac{1}{605} a^{6} - \frac{3}{605} a^{5} + \frac{1}{121} a^{3} + \frac{239}{605} a - \frac{122}{605}$, $\frac{1}{605} a^{7} + \frac{2}{605} a^{5} + \frac{1}{121} a^{4} - \frac{8}{121} a^{3} + \frac{239}{605} a^{2} + \frac{9}{121} a - \frac{102}{605}$, $\frac{1}{33275} a^{8} + \frac{7}{33275} a^{7} + \frac{13}{33275} a^{6} + \frac{239}{33275} a^{5} + \frac{2}{1331} a^{4} + \frac{14369}{33275} a^{3} - \frac{8017}{33275} a^{2} - \frac{10303}{33275} a - \frac{8634}{33275}$, $\frac{1}{338719616887699399409504964275} a^{9} + \frac{3379561614958960270863517}{338719616887699399409504964275} a^{8} - \frac{204853996716514274456394022}{338719616887699399409504964275} a^{7} + \frac{203458493187431391547250099}{338719616887699399409504964275} a^{6} - \frac{29790928195313707066938294}{13548784675507975976380198571} a^{5} - \frac{13507419285507620160601576356}{338719616887699399409504964275} a^{4} - \frac{5405359957903386473940802557}{30792692444336309037227724025} a^{3} - \frac{4769786671448611265176249593}{338719616887699399409504964275} a^{2} - \frac{120612241746918199885199854369}{338719616887699399409504964275} a - \frac{2424694577278949911968094765}{13548784675507975976380198571}$
Class group and class number
$C_{5}\times C_{5}\times C_{5}\times C_{5}\times C_{195}\times C_{195}$, which has order $23765625$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140417.5079969902 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.10135847904050000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 5 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $61$ | 61.5.4.2 | $x^{5} + 122$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.5.4.2 | $x^{5} + 122$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |