Normalized defining polynomial
\( x^{10} - x^{8} + 3466266 x^{6} - 14847792026 x^{4} + 12272470989561 x^{2} - 1750570287411125 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4516697311642659815261691676820000000=2^{8}\cdot 5^{7}\cdot 7^{8}\cdot 23^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4628.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{29} a^{4} - \frac{12}{29} a^{2} + \frac{7}{29}$, $\frac{1}{58} a^{5} - \frac{1}{58} a^{4} - \frac{6}{29} a^{3} + \frac{6}{29} a^{2} + \frac{7}{58} a - \frac{7}{58}$, $\frac{1}{184788} a^{6} - \frac{1}{61596} a^{4} - \frac{1}{2} a^{3} + \frac{38179}{184788} a^{2} + \frac{28889}{184788}$, $\frac{1}{184788} a^{7} - \frac{1}{61596} a^{5} - \frac{1}{58} a^{4} + \frac{38179}{184788} a^{3} + \frac{6}{29} a^{2} + \frac{28889}{184788} a + \frac{11}{29}$, $\frac{1}{2422785920877612} a^{8} + \frac{352379255}{605696480219403} a^{6} - \frac{170915160616}{10266042037617} a^{4} - \frac{1}{2} a^{3} + \frac{453687747983291}{1211392960438806} a^{2} - \frac{1}{2} a + \frac{270801156621469}{2422785920877612}$, $\frac{1}{45333558998824492132020} a^{9} + \frac{1030721461887841}{11333389749706123033005} a^{7} + \frac{57741336537267898763}{22666779499412246066010} a^{5} - \frac{3648928518936339131881}{7555593166470748688670} a^{3} - \frac{1}{2} a^{2} - \frac{6937593187530213614749}{45333558998824492132020} a - \frac{1}{2}$
Class group and class number
$C_{5}\times C_{5}\times C_{1740}\times C_{1740}$, which has order $75690000$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5542985.379769533 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.950441719585442000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 5 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/31.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| $23$ | 23.10.8.1 | $x^{10} - 23 x^{5} + 3703$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| $29$ | 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |