Normalized defining polynomial
\( x^{10} - 3x^{9} + 7x^{8} - 12x^{7} - 7x^{6} + 61x^{5} - 69x^{4} + 32x^{3} - 21x^{2} + 7x - 5 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[2, 4]$ |
| |
| Discriminant: |
\(4415968335104\)
\(\medspace = 2^{8}\cdot 29^{7}\)
|
| |
| Root discriminant: | \(18.39\) |
| |
| Galois root discriminant: | $2^{4/5}29^{3/4}\approx 21.758176478524742$ | ||
| Ramified primes: |
\(2\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{29}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{15}a^{7}+\frac{1}{3}a^{6}-\frac{7}{15}a^{5}+\frac{2}{5}a^{4}-\frac{2}{5}a^{3}-\frac{4}{15}a^{2}+\frac{7}{15}a-\frac{1}{3}$, $\frac{1}{15}a^{8}-\frac{2}{15}a^{6}-\frac{4}{15}a^{5}-\frac{2}{5}a^{4}-\frac{4}{15}a^{3}-\frac{1}{5}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{10035}a^{9}+\frac{29}{2007}a^{8}+\frac{59}{10035}a^{7}+\frac{4706}{10035}a^{6}-\frac{3293}{10035}a^{5}-\frac{2278}{10035}a^{4}-\frac{2044}{10035}a^{3}-\frac{2099}{10035}a^{2}+\frac{412}{10035}a-\frac{782}{2007}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1373}{10035}a^{9}-\frac{5629}{10035}a^{8}+\frac{14107}{10035}a^{7}-\frac{26624}{10035}a^{6}+\frac{7172}{10035}a^{5}+\frac{19511}{2007}a^{4}-\frac{191291}{10035}a^{3}+\frac{29461}{2007}a^{2}-\frac{53149}{10035}a+\frac{2735}{2007}$, $\frac{2}{2007}a^{9}+\frac{112}{10035}a^{8}+\frac{118}{2007}a^{7}-\frac{439}{10035}a^{6}+\frac{2527}{10035}a^{5}-\frac{4717}{10035}a^{4}-\frac{5053}{10035}a^{3}+\frac{23164}{10035}a^{2}+\frac{1493}{2007}a-\frac{461}{2007}$, $\frac{79}{10035}a^{9}-\frac{587}{10035}a^{8}+\frac{1316}{10035}a^{7}-\frac{2197}{10035}a^{6}+\frac{2101}{10035}a^{5}+\frac{2542}{2007}a^{4}-\frac{22993}{10035}a^{3}+\frac{821}{2007}a^{2}-\frac{902}{10035}a-\frac{230}{2007}$, $\frac{169}{1115}a^{9}-\frac{967}{3345}a^{8}+\frac{2038}{3345}a^{7}-\frac{2834}{3345}a^{6}-\frac{3031}{1115}a^{5}+\frac{8167}{1115}a^{4}-\frac{496}{669}a^{3}-\frac{10072}{3345}a^{2}-\frac{7426}{3345}a-\frac{365}{223}$, $\frac{169}{1115}a^{9}-\frac{967}{3345}a^{8}+\frac{2038}{3345}a^{7}-\frac{2834}{3345}a^{6}-\frac{3031}{1115}a^{5}+\frac{8167}{1115}a^{4}-\frac{496}{669}a^{3}-\frac{10072}{3345}a^{2}-\frac{7426}{3345}a-\frac{142}{223}$
|
| |
| Regulator: | \( 348.878664283 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 348.878664283 \cdot 1}{2\cdot\sqrt{4415968335104}}\cr\approx \mathstrut & 0.517500656081 \end{aligned}\]
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 5.1.390224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | 20.0.565522513762594615522033664.1 |
| Degree 5 sibling: | 5.1.390224.1 |
| Minimal sibling: | 5.1.390224.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.2.0.1}{2} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.5.0.1}{5} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.5.0.1}{5} }^{2}$ | ${\href{/padicField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.5.8a1.1 | $x^{10} + 5 x^{9} + 15 x^{8} + 30 x^{7} + 45 x^{6} + 51 x^{5} + 45 x^{4} + 30 x^{3} + 15 x^{2} + 5 x + 3$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ |
|
\(29\)
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 29.1.4.3a1.1 | $x^{4} + 29$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 29.1.4.3a1.1 | $x^{4} + 29$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |