# Properties

 Label 10.2.3359232000000.1 Degree $10$ Signature $[2, 4]$ Discriminant $2^{15}\cdot 3^{8}\cdot 5^{6}$ Root discriminant $17.89$ Ramified primes $2, 3, 5$ Class number $1$ Class group Trivial Galois group $S_{6}$ (as 10T32)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, 22, -58, 75, -64, 48, -28, 11, -4, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 4*x^9 + 11*x^8 - 28*x^7 + 48*x^6 - 64*x^5 + 75*x^4 - 58*x^3 + 22*x^2 - 4*x + 2)

gp: K = bnfinit(x^10 - 4*x^9 + 11*x^8 - 28*x^7 + 48*x^6 - 64*x^5 + 75*x^4 - 58*x^3 + 22*x^2 - 4*x + 2, 1)

## Normalizeddefining polynomial

$$x^{10} - 4 x^{9} + 11 x^{8} - 28 x^{7} + 48 x^{6} - 64 x^{5} + 75 x^{4} - 58 x^{3} + 22 x^{2} - 4 x + 2$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $10$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[2, 4]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$3359232000000=2^{15}\cdot 3^{8}\cdot 5^{6}$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $17.89$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3, 5$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{241} a^{9} + \frac{35}{241} a^{8} - \frac{70}{241} a^{7} - \frac{107}{241} a^{6} - \frac{28}{241} a^{5} + \frac{49}{241} a^{4} + \frac{58}{241} a^{3} + \frac{35}{241} a^{2} - \frac{59}{241} a + \frac{105}{241}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $5$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$426.292190685$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

$S_{6}$ (as 10T32):

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A non-solvable group of order 720 The 11 conjugacy class representatives for $S_{6}$ Character table for $S_{6}$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Sibling fields

 Degree 6 siblings: data not computed Degree 12 siblings: data not computed Degree 15 siblings: data not computed Degree 20 siblings: data not computed Degree 30 siblings: data not computed Degree 36 sibling: data not computed Degree 40 siblings: data not computed Degree 45 sibling: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R R R ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.7$x^{4} + 2 x^{3} + 2 x^{2} + 2$$4$$1$$6$$A_4$$[2, 2]^{3} 2.6.9.2x^{6} + 4 x^{2} - 8$$2$$3$$9$$A_4\times C_2$$[2, 2, 3]^{3}$
$3$3.10.8.1$x^{10} - 3 x^{5} + 18$$5$$2$$8$$F_5$$[\ ]_{5}^{4} 5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.9.6.1$x^{9} - 25 x^{3} + 250$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$