Normalized defining polynomial
\( x^{10} - 10 x^{8} + 35 x^{6} - 100 x^{5} - 50 x^{4} + 500 x^{3} + 25 x^{2} - 500 x - 2204 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28665446400000000=2^{25}\cdot 3^{7}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{140} a^{5} + \frac{1}{5} a^{4} - \frac{33}{140} a^{3} + \frac{2}{5} a^{2} + \frac{61}{140} a - \frac{11}{70}$, $\frac{1}{140} a^{6} + \frac{23}{140} a^{4} + \frac{33}{140} a^{2} - \frac{5}{14} a + \frac{2}{5}$, $\frac{1}{140} a^{7} - \frac{1}{10} a^{4} + \frac{11}{70} a^{3} - \frac{2}{35} a^{2} + \frac{53}{140} a - \frac{27}{70}$, $\frac{1}{280} a^{8} - \frac{1}{280} a^{7} - \frac{1}{280} a^{5} - \frac{1}{14} a^{4} + \frac{31}{280} a^{3} + \frac{19}{280} a^{2} + \frac{1}{5} a - \frac{23}{70}$, $\frac{1}{1400} a^{9} - \frac{1}{700} a^{8} - \frac{1}{1400} a^{7} - \frac{3}{1400} a^{6} + \frac{1}{1400} a^{5} + \frac{33}{1400} a^{4} - \frac{2}{175} a^{3} - \frac{433}{1400} a^{2} - \frac{97}{700} a + \frac{26}{175}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110675.156069 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:Q_8$ (as 10T20):
| A solvable group of order 200 |
| The 8 conjugacy class representatives for $C_5^2 : Q_8$ |
| Character table for $C_5^2 : Q_8$ |
Intermediate fields
| \(\Q(\sqrt{6}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.8.22.4 | $x^{8} + 8 x^{7} + 8 x^{5} + 6 x^{4} + 24 x^{2} + 12$ | $4$ | $2$ | $22$ | $Q_8$ | $[3, 4]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.5.5.2 | $x^{5} + 5 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |