Properties

Label 10.2.2339717120000.1
Degree $10$
Signature $[2, 4]$
Discriminant $2.340\times 10^{12}$
Root discriminant \(17.26\)
Ramified primes $2,5,13$
Class number $1$
Class group trivial
Galois group $S_5$ (as 10T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 + 4*x^8 - 2*x^7 + 5*x^6 + 4*x^5 + 5*x^4 + 10*x^3 - 22*x^2 - 12*x + 9)
 
gp: K = bnfinit(y^10 + 4*y^8 - 2*y^7 + 5*y^6 + 4*y^5 + 5*y^4 + 10*y^3 - 22*y^2 - 12*y + 9, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 + 4*x^8 - 2*x^7 + 5*x^6 + 4*x^5 + 5*x^4 + 10*x^3 - 22*x^2 - 12*x + 9);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 + 4*x^8 - 2*x^7 + 5*x^6 + 4*x^5 + 5*x^4 + 10*x^3 - 22*x^2 - 12*x + 9)
 

\( x^{10} + 4x^{8} - 2x^{7} + 5x^{6} + 4x^{5} + 5x^{4} + 10x^{3} - 22x^{2} - 12x + 9 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2339717120000\) \(\medspace = 2^{17}\cdot 5^{4}\cdot 13^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.26\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}5^{1/2}13^{2/3}\approx 44.055712473468965$
Ramified primes:   \(2\), \(5\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{2}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{2}{5}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{4}-\frac{1}{5}a^{3}-\frac{2}{5}a^{2}+\frac{2}{5}$, $\frac{1}{6855}a^{9}-\frac{182}{2285}a^{8}-\frac{2129}{6855}a^{7}-\frac{1547}{6855}a^{6}-\frac{248}{1371}a^{5}-\frac{2972}{6855}a^{4}+\frac{439}{1371}a^{3}-\frac{206}{6855}a^{2}+\frac{32}{6855}a+\frac{1027}{2285}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{133}{1371}a^{9}+\frac{15}{457}a^{8}+\frac{640}{1371}a^{7}-\frac{101}{1371}a^{6}+\frac{971}{1371}a^{5}+\frac{943}{1371}a^{4}+\frac{1283}{1371}a^{3}+\frac{2764}{1371}a^{2}-\frac{2599}{1371}a-\frac{52}{457}$, $\frac{968}{6855}a^{9}+\frac{226}{2285}a^{8}+\frac{3854}{6855}a^{7}+\frac{1007}{6855}a^{6}+\frac{4789}{6855}a^{5}+\frac{6317}{6855}a^{4}+\frac{12049}{6855}a^{3}+\frac{2071}{1371}a^{2}-\frac{10154}{6855}a-\frac{1156}{457}$, $\frac{1037}{2285}a^{9}-\frac{893}{2285}a^{8}+\frac{5021}{2285}a^{7}-\frac{6567}{2285}a^{6}+\frac{11086}{2285}a^{5}-\frac{5897}{2285}a^{4}+\frac{10866}{2285}a^{3}+\frac{325}{457}a^{2}-\frac{23941}{2285}a+\frac{1850}{457}$, $\frac{1513}{6855}a^{9}+\frac{662}{2285}a^{8}+\frac{6157}{6855}a^{7}+\frac{6541}{6855}a^{6}+\frac{3521}{6855}a^{5}+\frac{23551}{6855}a^{4}+\frac{11441}{6855}a^{3}+\frac{40669}{6855}a^{2}-\frac{13279}{6855}a-\frac{14573}{2285}$, $\frac{368}{6855}a^{9}+\frac{203}{2285}a^{8}+\frac{148}{1371}a^{7}+\frac{208}{1371}a^{6}+\frac{223}{6855}a^{5}+\frac{895}{1371}a^{4}+\frac{2983}{6855}a^{3}+\frac{968}{6855}a^{2}-\frac{1934}{6855}a-\frac{1831}{2285}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 344.74214707 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 344.74214707 \cdot 1}{2\cdot\sqrt{2339717120000}}\cr\approx \mathstrut & 0.70252563273 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 + 4*x^8 - 2*x^7 + 5*x^6 + 4*x^5 + 5*x^4 + 10*x^3 - 22*x^2 - 12*x + 9)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 + 4*x^8 - 2*x^7 + 5*x^6 + 4*x^5 + 5*x^4 + 10*x^3 - 22*x^2 - 12*x + 9, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 + 4*x^8 - 2*x^7 + 5*x^6 + 4*x^5 + 5*x^4 + 10*x^3 - 22*x^2 - 12*x + 9);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 + 4*x^8 - 2*x^7 + 5*x^6 + 4*x^5 + 5*x^4 + 10*x^3 - 22*x^2 - 12*x + 9);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_5$ (as 10T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 120
The 7 conjugacy class representatives for $S_5$
Character table for $S_5$

Intermediate fields

\(\Q(\sqrt{2}) \), 5.1.135200.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 5 sibling: 5.1.135200.1
Degree 6 sibling: 6.2.1462323200.1
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 sibling: data not computed
Degree 30 siblings: data not computed
Degree 40 sibling: data not computed
Minimal sibling: 5.1.135200.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ R ${\href{/padicField/7.5.0.1}{5} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ R ${\href{/padicField/17.2.0.1}{2} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.5.0.1}{5} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.6.1$x^{4} + 2 x^{3} + 31 x^{2} + 30 x + 183$$2$$2$$6$$C_2^2$$[3]^{2}$
2.6.11.1$x^{6} + 4 x^{3} + 2$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
\(5\) Copy content Toggle raw display 5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
\(13\) Copy content Toggle raw display 13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.6.4.2$x^{6} - 156 x^{3} + 338$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$