Properties

Label 10.2.166075312500000000.7
Degree $10$
Signature $[2, 4]$
Discriminant $2^{8}\cdot 3^{12}\cdot 5^{13}$
Root discriminant $52.73$
Ramified primes $2, 3, 5$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $\PGL(2,9)$ (as 10T30)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![144, 120, -315, 720, 840, -456, -30, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 30*x^6 - 456*x^5 + 840*x^4 + 720*x^3 - 315*x^2 + 120*x + 144)
 
gp: K = bnfinit(x^10 - 30*x^6 - 456*x^5 + 840*x^4 + 720*x^3 - 315*x^2 + 120*x + 144, 1)
 

Normalized defining polynomial

\( x^{10} - 30 x^{6} - 456 x^{5} + 840 x^{4} + 720 x^{3} - 315 x^{2} + 120 x + 144 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(166075312500000000=2^{8}\cdot 3^{12}\cdot 5^{13}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{16} a^{5} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{16} a + \frac{1}{4}$, $\frac{1}{32} a^{6} + \frac{1}{16} a^{3} - \frac{1}{32} a^{2} - \frac{5}{16} a + \frac{1}{4}$, $\frac{1}{64} a^{7} - \frac{1}{64} a^{6} - \frac{1}{32} a^{5} - \frac{1}{32} a^{4} + \frac{5}{64} a^{3} + \frac{3}{64} a^{2} - \frac{1}{16} a$, $\frac{1}{256} a^{8} - \frac{3}{256} a^{6} + \frac{11}{256} a^{4} - \frac{1}{32} a^{3} + \frac{39}{256} a^{2} - \frac{11}{32} a + \frac{3}{16}$, $\frac{1}{1536} a^{9} - \frac{1}{512} a^{8} - \frac{1}{512} a^{7} + \frac{3}{512} a^{6} - \frac{7}{512} a^{5} + \frac{29}{512} a^{4} - \frac{43}{512} a^{3} + \frac{17}{512} a^{2} - \frac{31}{64} a + \frac{5}{32}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 72686.9320623 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PGL(2,9)$ (as 10T30):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for $\PGL(2,9)$
Character table for $\PGL(2,9)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Degree 20 sibling: data not computed
Degree 30 sibling: data not computed
Degree 36 sibling: data not computed
Degree 40 sibling: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.9.12.26$x^{9} + 3 x^{4} + 3 x^{3} + 3$$9$$1$$12$$C_3^2:C_8$$[3/2, 3/2]_{2}^{4}$
$5$5.10.13.2$x^{10} + 10 x^{4} + 5$$10$$1$$13$$D_{10}$$[3/2]_{2}^{2}$