Normalized defining polynomial
\( x^{10} - 5 x^{9} + 5 x^{8} + 10 x^{7} - 15 x^{6} + 90628135 x^{5} - 226570350 x^{4} + 1359422200 x^{3} - 1812562925 x^{2} + 1585992550 x + 2053364713394525 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16042489871729878088387919882861328125=3^{8}\cdot 5^{11}\cdot 7^{8}\cdot 233^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $5254.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 233$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{21} a^{4} - \frac{2}{21} a^{3} - \frac{1}{21} a^{2} + \frac{2}{21} a + \frac{1}{21}$, $\frac{1}{105} a^{5} - \frac{1}{21} a^{3} + \frac{1}{21} a - \frac{8}{21}$, $\frac{1}{2205} a^{6} - \frac{1}{735} a^{5} + \frac{1}{441} a^{3} - \frac{59}{147} a + \frac{88}{441}$, $\frac{1}{2205} a^{7} - \frac{1}{245} a^{5} + \frac{1}{441} a^{4} + \frac{1}{147} a^{3} - \frac{59}{147} a^{2} - \frac{2}{441} a - \frac{59}{147}$, $\frac{1}{231525} a^{8} - \frac{1}{9261} a^{7} - \frac{8}{46305} a^{6} - \frac{40}{9261} a^{5} - \frac{904}{46305} a^{4} - \frac{724}{46305} a^{3} + \frac{179}{9261} a^{2} - \frac{2456}{9261} a - \frac{278}{9261}$, $\frac{1}{976180870201076659794376369783516275} a^{9} - \frac{594882826570168622080318378633}{976180870201076659794376369783516275} a^{8} - \frac{5945148577749445179520478892026}{195236174040215331958875273956703255} a^{7} + \frac{26942979151347912774766106475004}{195236174040215331958875273956703255} a^{6} + \frac{42015592788224554658417729022176}{27890882005745047422696467708100465} a^{5} - \frac{1128077223882746090372286718637662}{195236174040215331958875273956703255} a^{4} + \frac{88105408959717544542728769195344272}{195236174040215331958875273956703255} a^{3} + \frac{657035500882305230858181794289544}{5578176401149009484539293541620093} a^{2} + \frac{2699900151874108967415710199472171}{5578176401149009484539293541620093} a - \frac{1167808221304519320265298962670462}{13015744936014355463925018263780217}$
Class group and class number
$C_{5}\times C_{5}\times C_{17670}\times C_{17670}$, which has order $7805722500$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68008.13611618712 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.1791228063186253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 5 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| $7$ | 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 233 | Data not computed | ||||||