Normalized defining polynomial
\( x^{10} - 2 x^{9} - 84935 x^{8} + 125379 x^{7} + 2569320032 x^{6} - 3083201570 x^{5} - 32841471350544 x^{4} + 40223478097149 x^{3} + 163548767062839187 x^{2} - 210143682860212395 x - 224574867150077989413 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5121551119721950730382028224671493=3^{5}\cdot 19^{5}\cdot 37^{5}\cdot 2617^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2349.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 37, 2617$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{17107712885445664584122440752949930048909254470916288763675733148753318145521} a^{9} - \frac{4896481675452672833807419941498570510171141020745549781167215430536671631732}{17107712885445664584122440752949930048909254470916288763675733148753318145521} a^{8} - \frac{4844935933638298365026082825291385810687323157753437244558546767003422643011}{17107712885445664584122440752949930048909254470916288763675733148753318145521} a^{7} - \frac{2548026188679311547562950069171078570236391250003417816087957249215348028584}{5702570961815221528040813584316643349636418156972096254558577716251106048507} a^{6} + \frac{297402830709095455725974381666522944626257133309112906682363758645518089941}{743813603715028894961845250128257828213445846561577772333727528206666006327} a^{5} + \frac{3569096424424997854748505096835377605689224364351114764145200209522716397305}{17107712885445664584122440752949930048909254470916288763675733148753318145521} a^{4} - \frac{32895673800865030978657238914898531053626387822127490828250475267299132107}{247937867905009631653948416709419276071148615520525924111242509402222002109} a^{3} + \frac{1426832744884880144404071837041687270057134257986522277791286055820257690311}{5702570961815221528040813584316643349636418156972096254558577716251106048507} a^{2} - \frac{7389998699255075247903612027357520026776161684354792394948407235568175091141}{17107712885445664584122440752949930048909254470916288763675733148753318145521} a + \frac{1610266104229216133692798916857323809565995910489257080073038192012076566148}{5702570961815221528040813584316643349636418156972096254558577716251106048507}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1621704091710 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_5$ (as 10T22):
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $S_5\times C_2$ |
| Character table for $S_5\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5519253}) \), 5.5.149169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 2617 | Data not computed | ||||||