Properties

Label 10.10.2680810943141213.1
Degree $10$
Signature $[10, 0]$
Discriminant $2.681\times 10^{15}$
Root discriminant \(34.90\)
Ramified prime $138917$
Class number $1$
Class group trivial
Galois group $S_5$ (as 10T13)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 - 15*x^8 + 24*x^7 + 69*x^6 - 79*x^5 - 112*x^4 + 82*x^3 + 56*x^2 - 29*x - 4)
 
gp: K = bnfinit(y^10 - 2*y^9 - 15*y^8 + 24*y^7 + 69*y^6 - 79*y^5 - 112*y^4 + 82*y^3 + 56*y^2 - 29*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 2*x^9 - 15*x^8 + 24*x^7 + 69*x^6 - 79*x^5 - 112*x^4 + 82*x^3 + 56*x^2 - 29*x - 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 2*x^9 - 15*x^8 + 24*x^7 + 69*x^6 - 79*x^5 - 112*x^4 + 82*x^3 + 56*x^2 - 29*x - 4)
 

\( x^{10} - 2x^{9} - 15x^{8} + 24x^{7} + 69x^{6} - 79x^{5} - 112x^{4} + 82x^{3} + 56x^{2} - 29x - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[10, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2680810943141213\) \(\medspace = 138917^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $138917^{1/2}\approx 372.71570935499886$
Ramified primes:   \(138917\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{138917}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7023}a^{9}+\frac{935}{7023}a^{8}-\frac{1795}{7023}a^{7}-\frac{3394}{7023}a^{6}+\frac{1310}{7023}a^{5}-\frac{1634}{7023}a^{4}-\frac{52}{2341}a^{3}+\frac{1393}{7023}a^{2}-\frac{327}{2341}a+\frac{787}{7023}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{3076}{7023}a^{9}-\frac{3370}{7023}a^{8}-\frac{50503}{7023}a^{7}+\frac{31349}{7023}a^{6}+\frac{258209}{7023}a^{5}-\frac{46877}{7023}a^{4}-\frac{150588}{2341}a^{3}-\frac{48323}{7023}a^{2}+\frac{63985}{2341}a+\frac{25969}{7023}$, $\frac{3076}{7023}a^{9}-\frac{3370}{7023}a^{8}-\frac{50503}{7023}a^{7}+\frac{31349}{7023}a^{6}+\frac{258209}{7023}a^{5}-\frac{46877}{7023}a^{4}-\frac{150588}{2341}a^{3}-\frac{48323}{7023}a^{2}+\frac{66326}{2341}a+\frac{25969}{7023}$, $\frac{2108}{7023}a^{9}-\frac{2483}{7023}a^{8}-\frac{33578}{7023}a^{7}+\frac{22954}{7023}a^{6}+\frac{162970}{7023}a^{5}-\frac{31294}{7023}a^{4}-\frac{86206}{2341}a^{3}-\frac{48331}{7023}a^{2}+\frac{29371}{2341}a+\frac{22637}{7023}$, $\frac{2108}{7023}a^{9}-\frac{2483}{7023}a^{8}-\frac{33578}{7023}a^{7}+\frac{22954}{7023}a^{6}+\frac{162970}{7023}a^{5}-\frac{31294}{7023}a^{4}-\frac{86206}{2341}a^{3}-\frac{48331}{7023}a^{2}+\frac{31712}{2341}a+\frac{22637}{7023}$, $\frac{1949}{7023}a^{9}-\frac{3665}{7023}a^{8}-\frac{29093}{7023}a^{7}+\frac{42898}{7023}a^{6}+\frac{130255}{7023}a^{5}-\frac{136684}{7023}a^{4}-\frac{63892}{2341}a^{3}+\frac{144539}{7023}a^{2}+\frac{25180}{2341}a-\frac{53335}{7023}$, $\frac{682}{7023}a^{9}-\frac{1423}{7023}a^{8}-\frac{9211}{7023}a^{7}+\frac{16928}{7023}a^{6}+\frac{29591}{7023}a^{5}-\frac{53915}{7023}a^{4}+\frac{1992}{2341}a^{3}+\frac{44059}{7023}a^{2}-\frac{12324}{2341}a-\frac{4037}{7023}$, $\frac{299}{7023}a^{9}-\frac{1355}{7023}a^{8}-\frac{2957}{7023}a^{7}+\frac{17575}{7023}a^{6}+\frac{5425}{7023}a^{5}-\frac{67186}{7023}a^{4}-\frac{1502}{2341}a^{3}+\frac{100472}{7023}a^{2}+\frac{2890}{2341}a-\frac{45607}{7023}$, $\frac{1355}{7023}a^{9}-\frac{4238}{7023}a^{8}-\frac{16313}{7023}a^{7}+\frac{50356}{7023}a^{6}+\frac{47392}{7023}a^{5}-\frac{149308}{7023}a^{4}-\frac{4912}{2341}a^{3}+\frac{89627}{7023}a^{2}-\frac{7659}{2341}a-\frac{1111}{7023}$, $\frac{652}{2341}a^{9}-\frac{1381}{2341}a^{8}-\frac{9204}{2341}a^{7}+\frac{15744}{2341}a^{6}+\frac{37111}{2341}a^{5}-\frac{44692}{2341}a^{4}-\frac{43187}{2341}a^{3}+\frac{25679}{2341}a^{2}+\frac{6504}{2341}a+\frac{445}{2341}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 53587.2381796 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{0}\cdot 53587.2381796 \cdot 1}{2\cdot\sqrt{2680810943141213}}\cr\approx \mathstrut & 0.529905273790 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 - 15*x^8 + 24*x^7 + 69*x^6 - 79*x^5 - 112*x^4 + 82*x^3 + 56*x^2 - 29*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 2*x^9 - 15*x^8 + 24*x^7 + 69*x^6 - 79*x^5 - 112*x^4 + 82*x^3 + 56*x^2 - 29*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 2*x^9 - 15*x^8 + 24*x^7 + 69*x^6 - 79*x^5 - 112*x^4 + 82*x^3 + 56*x^2 - 29*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 2*x^9 - 15*x^8 + 24*x^7 + 69*x^6 - 79*x^5 - 112*x^4 + 82*x^3 + 56*x^2 - 29*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_5$ (as 10T13):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 120
The 7 conjugacy class representatives for $S_5$
Character table for $S_5$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 5 sibling: 5.5.138917.1
Degree 6 sibling: 6.6.2680810943141213.1
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 sibling: data not computed
Degree 30 siblings: data not computed
Degree 40 sibling: data not computed
Minimal sibling: 5.5.138917.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }$ ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.5.0.1}{5} }^{2}$ ${\href{/padicField/11.5.0.1}{5} }^{2}$ ${\href{/padicField/13.5.0.1}{5} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.5.0.1}{5} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.3.0.1}{3} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.5.0.1}{5} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(138917\) Copy content Toggle raw display $\Q_{138917}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{138917}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{138917}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{138917}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$