Properties

Label 10.10.1412799778...5392.1
Degree $10$
Signature $[10, 0]$
Discriminant $2^{10}\cdot 11^{8}\cdot 23^{5}$
Root discriminant $65.31$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4240279, -446344, 1168426, 94556, -118785, -6794, 5582, 198, -122, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 - 122*x^8 + 198*x^7 + 5582*x^6 - 6794*x^5 - 118785*x^4 + 94556*x^3 + 1168426*x^2 - 446344*x - 4240279)
 
gp: K = bnfinit(x^10 - 2*x^9 - 122*x^8 + 198*x^7 + 5582*x^6 - 6794*x^5 - 118785*x^4 + 94556*x^3 + 1168426*x^2 - 446344*x - 4240279, 1)
 

Normalized defining polynomial

\( x^{10} - 2 x^{9} - 122 x^{8} + 198 x^{7} + 5582 x^{6} - 6794 x^{5} - 118785 x^{4} + 94556 x^{3} + 1168426 x^{2} - 446344 x - 4240279 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1412799778009275392=2^{10}\cdot 11^{8}\cdot 23^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1012=2^{2}\cdot 11\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{1012}(1,·)$, $\chi_{1012}(643,·)$, $\chi_{1012}(551,·)$, $\chi_{1012}(553,·)$, $\chi_{1012}(93,·)$, $\chi_{1012}(367,·)$, $\chi_{1012}(185,·)$, $\chi_{1012}(91,·)$, $\chi_{1012}(829,·)$, $\chi_{1012}(735,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{26328358385008894237} a^{9} + \frac{13049572261484053091}{26328358385008894237} a^{8} - \frac{10501849103532579105}{26328358385008894237} a^{7} - \frac{4310177296071808901}{26328358385008894237} a^{6} + \frac{4511792259802142207}{26328358385008894237} a^{5} + \frac{12466554785231732065}{26328358385008894237} a^{4} - \frac{3253291028014417020}{26328358385008894237} a^{3} + \frac{12008414331537588293}{26328358385008894237} a^{2} - \frac{2253645631339753349}{26328358385008894237} a - \frac{340071736228244755}{26328358385008894237}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 601601.137232 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{23}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }$ ${\href{/LocalNumberField/5.10.0.1}{10} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.10.0.1}{10} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
$23$23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e2_23.2t1.1c1$1$ $ 2^{2} \cdot 23 $ $x^{2} - 23$ $C_2$ (as 2T1) $1$ $1$
* 1.11.5t1.1c1$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.2e2_11_23.10t1.1c1$1$ $ 2^{2} \cdot 11 \cdot 23 $ $x^{10} - 2 x^{9} - 122 x^{8} + 198 x^{7} + 5582 x^{6} - 6794 x^{5} - 118785 x^{4} + 94556 x^{3} + 1168426 x^{2} - 446344 x - 4240279$ $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.1c2$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.2e2_11_23.10t1.1c2$1$ $ 2^{2} \cdot 11 \cdot 23 $ $x^{10} - 2 x^{9} - 122 x^{8} + 198 x^{7} + 5582 x^{6} - 6794 x^{5} - 118785 x^{4} + 94556 x^{3} + 1168426 x^{2} - 446344 x - 4240279$ $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.1c3$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.2e2_11_23.10t1.1c3$1$ $ 2^{2} \cdot 11 \cdot 23 $ $x^{10} - 2 x^{9} - 122 x^{8} + 198 x^{7} + 5582 x^{6} - 6794 x^{5} - 118785 x^{4} + 94556 x^{3} + 1168426 x^{2} - 446344 x - 4240279$ $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.1c4$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.2e2_11_23.10t1.1c4$1$ $ 2^{2} \cdot 11 \cdot 23 $ $x^{10} - 2 x^{9} - 122 x^{8} + 198 x^{7} + 5582 x^{6} - 6794 x^{5} - 118785 x^{4} + 94556 x^{3} + 1168426 x^{2} - 446344 x - 4240279$ $C_{10}$ (as 10T1) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.