Normalized defining polynomial
\( x^{10} - 20 x^{8} + 149 x^{6} - 519 x^{4} + 851 x^{2} - 529 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116117348402176=2^{10}\cdot 11^{8}\cdot 23^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{23} a^{8} + \frac{3}{23} a^{6} + \frac{11}{23} a^{4} + \frac{10}{23} a^{2}$, $\frac{1}{23} a^{9} + \frac{3}{23} a^{7} + \frac{11}{23} a^{5} + \frac{10}{23} a^{3}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4721.9254566 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_5$ (as 10T8):
| A solvable group of order 80 |
| The 8 conjugacy class representatives for $C_2^4 : C_5$ |
| Character table for $C_2^4 : C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.11.5t1.1c1 | $1$ | $ 11 $ | $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ | $C_5$ (as 5T1) | $0$ | $1$ |
| * | 1.11.5t1.1c2 | $1$ | $ 11 $ | $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ | $C_5$ (as 5T1) | $0$ | $1$ |
| * | 1.11.5t1.1c3 | $1$ | $ 11 $ | $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ | $C_5$ (as 5T1) | $0$ | $1$ |
| * | 1.11.5t1.1c4 | $1$ | $ 11 $ | $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ | $C_5$ (as 5T1) | $0$ | $1$ |
| 5.2e10_11e4_23e4.10t8.2c1 | $5$ | $ 2^{10} \cdot 11^{4} \cdot 23^{4}$ | $x^{10} - 20 x^{8} + 149 x^{6} - 519 x^{4} + 851 x^{2} - 529$ | $C_2^4 : C_5$ (as 10T8) | $1$ | $5$ | |
| 5.2e10_11e4_23e2.10t8.3c1 | $5$ | $ 2^{10} \cdot 11^{4} \cdot 23^{2}$ | $x^{10} - 20 x^{8} + 149 x^{6} - 519 x^{4} + 851 x^{2} - 529$ | $C_2^4 : C_5$ (as 10T8) | $1$ | $5$ | |
| * | 5.2e10_11e4_23e2.10t8.4c1 | $5$ | $ 2^{10} \cdot 11^{4} \cdot 23^{2}$ | $x^{10} - 20 x^{8} + 149 x^{6} - 519 x^{4} + 851 x^{2} - 529$ | $C_2^4 : C_5$ (as 10T8) | $1$ | $5$ |