Normalized defining polynomial
\( x^{10} - x^{9} + 144 x^{8} - 144 x^{7} + 7580 x^{6} - 7580 x^{5} + 176749 x^{4} - 176749 x^{3} + 1747604 x^{2} - 1747604 x + 5831827 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-986083097105956663=-\,11^{9}\cdot 53^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(583=11\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{583}(1,·)$, $\chi_{583}(582,·)$, $\chi_{583}(105,·)$, $\chi_{583}(370,·)$, $\chi_{583}(531,·)$, $\chi_{583}(52,·)$, $\chi_{583}(213,·)$, $\chi_{583}(372,·)$, $\chi_{583}(478,·)$, $\chi_{583}(211,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{881453} a^{6} - \frac{328966}{881453} a^{5} + \frac{78}{881453} a^{4} - \frac{227918}{881453} a^{3} + \frac{1521}{881453} a^{2} - \frac{318575}{881453} a + \frac{4394}{881453}$, $\frac{1}{881453} a^{7} + \frac{91}{881453} a^{5} - \frac{130707}{881453} a^{4} + \frac{2366}{881453} a^{3} + \frac{254860}{881453} a^{2} + \frac{15379}{881453} a - \frac{106316}{881453}$, $\frac{1}{881453} a^{8} - \frac{164203}{881453} a^{5} - \frac{4732}{881453} a^{4} - \frac{159474}{881453} a^{3} - \frac{123032}{881453} a^{2} - \frac{203940}{881453} a - \frac{399854}{881453}$, $\frac{1}{881453} a^{9} - \frac{6084}{881453} a^{5} + \frac{308018}{881453} a^{4} - \frac{210912}{881453} a^{3} + \frac{97624}{881453} a^{2} + \frac{220612}{881453} a - \frac{402025}{881453}$
Class group and class number
$C_{1208}$, which has order $1208$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-583}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $53$ | 53.10.5.1 | $x^{10} - 5618 x^{6} + 7890481 x^{2} - 3763759437$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |