Properties

Label 10.0.98476766684...4375.2
Degree $10$
Signature $[0, 5]$
Discriminant $-\,5^{5}\cdot 11^{8}\cdot 43^{5}$
Root discriminant $99.85$
Ramified primes $5, 11, 43$
Class number $12320$ (GRH)
Class group $[2, 2, 2, 2, 770]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![530225081, -26450825, 45358544, -1867077, 1591806, -50692, 28630, -628, 264, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 264*x^8 - 628*x^7 + 28630*x^6 - 50692*x^5 + 1591806*x^4 - 1867077*x^3 + 45358544*x^2 - 26450825*x + 530225081)
 
gp: K = bnfinit(x^10 - 3*x^9 + 264*x^8 - 628*x^7 + 28630*x^6 - 50692*x^5 + 1591806*x^4 - 1867077*x^3 + 45358544*x^2 - 26450825*x + 530225081, 1)
 

Normalized defining polynomial

\( x^{10} - 3 x^{9} + 264 x^{8} - 628 x^{7} + 28630 x^{6} - 50692 x^{5} + 1591806 x^{4} - 1867077 x^{3} + 45358544 x^{2} - 26450825 x + 530225081 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-98476766684475884375=-\,5^{5}\cdot 11^{8}\cdot 43^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $99.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2365=5\cdot 11\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{2365}(1,·)$, $\chi_{2365}(2149,·)$, $\chi_{2365}(1291,·)$, $\chi_{2365}(1934,·)$, $\chi_{2365}(1076,·)$, $\chi_{2365}(214,·)$, $\chi_{2365}(1719,·)$, $\chi_{2365}(1721,·)$, $\chi_{2365}(859,·)$, $\chi_{2365}(861,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{258023425561826558767871} a^{9} - \frac{126520406558550111002784}{258023425561826558767871} a^{8} + \frac{47484986192137768755682}{258023425561826558767871} a^{7} - \frac{17083757822104204956587}{258023425561826558767871} a^{6} - \frac{94179090109598502975958}{258023425561826558767871} a^{5} - \frac{46334633004476754927234}{258023425561826558767871} a^{4} - \frac{16646241690547014255126}{258023425561826558767871} a^{3} - \frac{66981401397122544626528}{258023425561826558767871} a^{2} - \frac{80778092736958276996284}{258023425561826558767871} a - \frac{2075029130975946562145}{258023425561826558767871}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{770}$, which has order $12320$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-215}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.5.2$x^{10} - 625 x^{2} + 6250$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
$43$43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$