Normalized defining polynomial
\( x^{10} - 2 x^{9} + 663 x^{8} - 1058 x^{7} + 177968 x^{6} - 213092 x^{5} + 24170371 x^{4} - 19358686 x^{3} + 1660643511 x^{2} - 669185018 x + 46173766231 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9483429712577339949056=-\,2^{15}\cdot 11^{8}\cdot 67^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $157.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(5896=2^{3}\cdot 11\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{5896}(1,·)$, $\chi_{5896}(133,·)$, $\chi_{5896}(3217,·)$, $\chi_{5896}(1609,·)$, $\chi_{5896}(1741,·)$, $\chi_{5896}(5361,·)$, $\chi_{5896}(3349,·)$, $\chi_{5896}(537,·)$, $\chi_{5896}(669,·)$, $\chi_{5896}(5493,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{23} a^{8} + \frac{1}{23} a^{7} - \frac{5}{23} a^{6} + \frac{4}{23} a^{5} + \frac{3}{23} a^{4} - \frac{4}{23} a^{3} - \frac{8}{23} a^{2} - \frac{8}{23} a + \frac{3}{23}$, $\frac{1}{92322657398410645440162127} a^{9} - \frac{1646333578198214731820968}{92322657398410645440162127} a^{8} - \frac{11319177450119675610646663}{92322657398410645440162127} a^{7} + \frac{94068739774312360601968}{2147038544149084777678189} a^{6} + \frac{1009376853268558563853927}{92322657398410645440162127} a^{5} + \frac{24834190803023701464814669}{92322657398410645440162127} a^{4} - \frac{44967104839703784501757372}{92322657398410645440162127} a^{3} + \frac{35349927633315371301089218}{92322657398410645440162127} a^{2} - \frac{34634700229131287758744090}{92322657398410645440162127} a + \frac{940541714579749189750951}{2147038544149084777678189}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{17570}$, which has order $281120$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-134}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $67$ | 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |