Properties

Label 10.0.873360422339584.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,2^{10}\cdot 31^{8}$
Root discriminant $31.20$
Ramified primes $2, 31$
Class number $41$
Class group $[41]$
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 0, 211, 0, 475, 0, 188, 0, 25, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 + 25*x^8 + 188*x^6 + 475*x^4 + 211*x^2 + 25)
 
gp: K = bnfinit(x^10 + 25*x^8 + 188*x^6 + 475*x^4 + 211*x^2 + 25, 1)
 

Normalized defining polynomial

\( x^{10} + 25 x^{8} + 188 x^{6} + 475 x^{4} + 211 x^{2} + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-873360422339584=-\,2^{10}\cdot 31^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(124=2^{2}\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{124}(1,·)$, $\chi_{124}(35,·)$, $\chi_{124}(97,·)$, $\chi_{124}(101,·)$, $\chi_{124}(33,·)$, $\chi_{124}(39,·)$, $\chi_{124}(109,·)$, $\chi_{124}(47,·)$, $\chi_{124}(63,·)$, $\chi_{124}(95,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{335} a^{8} + \frac{32}{335} a^{6} + \frac{144}{335} a^{4} + \frac{143}{335} a^{2} + \frac{28}{67}$, $\frac{1}{335} a^{9} + \frac{32}{335} a^{7} + \frac{2}{67} a^{5} + \frac{143}{335} a^{3} - \frac{61}{335} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{41}$, which has order $41$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{37}{335} a^{9} - \frac{916}{335} a^{7} - \frac{1347}{67} a^{5} - \frac{15944}{335} a^{3} - \frac{3773}{335} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{22}{335} a^{8} + \frac{114}{67} a^{6} + \frac{4508}{335} a^{4} + \frac{2331}{67} a^{2} + \frac{482}{67} \),  \( \frac{128}{335} a^{9} + \frac{3158}{335} a^{7} + \frac{4611}{67} a^{5} + \frac{53747}{335} a^{3} + \frac{11287}{335} a \),  \( \frac{112}{335} a^{9} + \frac{556}{67} a^{7} + \frac{4110}{67} a^{5} + \frac{9863}{67} a^{3} + \frac{13603}{335} a \),  \( \frac{2}{335} a^{8} + \frac{64}{335} a^{6} + \frac{623}{335} a^{4} + \frac{1626}{335} a^{2} + \frac{56}{67} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 485.913224212 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 5.5.923521.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }$ ${\href{/LocalNumberField/5.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/7.10.0.1}{10} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/37.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
$31$31.10.8.1$x^{10} - 20491 x^{5} + 239127552$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$