Normalized defining polynomial
\( x^{10} + 33 x^{8} + 288 x^{6} + 679 x^{4} + 531 x^{2} + 81 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8176563434619904=-\,2^{10}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(164=2^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{164}(1,·)$, $\chi_{164}(83,·)$, $\chi_{164}(37,·)$, $\chi_{164}(139,·)$, $\chi_{164}(141,·)$, $\chi_{164}(51,·)$, $\chi_{164}(119,·)$, $\chi_{164}(57,·)$, $\chi_{164}(59,·)$, $\chi_{164}(133,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{27} a^{6} + \frac{2}{27} a^{4} + \frac{1}{27} a^{2} + \frac{1}{3}$, $\frac{1}{27} a^{7} + \frac{2}{27} a^{5} + \frac{1}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{9} a^{4} + \frac{7}{27} a^{2} + \frac{1}{3}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{5} + \frac{7}{81} a^{3} - \frac{2}{9} a$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5}{27} a^{9} + \frac{158}{27} a^{7} + \frac{1219}{27} a^{5} + \frac{1696}{27} a^{3} + 13 a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{41}{81} a^{9} + \frac{431}{27} a^{7} + \frac{3305}{27} a^{5} + \frac{13298}{81} a^{3} + \frac{218}{9} a \), \( \frac{5}{27} a^{8} + \frac{158}{27} a^{6} + \frac{1219}{27} a^{4} + \frac{1705}{27} a^{2} + \frac{43}{3} \), \( \frac{1}{27} a^{8} + \frac{32}{27} a^{6} + \frac{250}{27} a^{4} + \frac{121}{9} a^{2} + 3 \), \( \frac{17}{27} a^{9} + \frac{536}{27} a^{7} + \frac{4108}{27} a^{5} + \frac{5506}{27} a^{3} + \frac{104}{3} a \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1973.27972308 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.2825761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| $41$ | 41.5.4.1 | $x^{5} - 41$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.5.4.1 | $x^{5} - 41$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |