Normalized defining polynomial
\( x^{10} - x^{9} + 881 x^{8} - 881 x^{7} + 282481 x^{6} - 282481 x^{5} + 39706481 x^{4} - 39706481 x^{3} + 2292506481 x^{2} - 2292506481 x + 38337306481 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8036358984236448717291=-\,3^{5}\cdot 11^{9}\cdot 107^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $155.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3531=3\cdot 11\cdot 107\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3531}(1,·)$, $\chi_{3531}(322,·)$, $\chi_{3531}(643,·)$, $\chi_{3531}(1285,·)$, $\chi_{3531}(2246,·)$, $\chi_{3531}(2888,·)$, $\chi_{3531}(3209,·)$, $\chi_{3531}(3530,·)$, $\chi_{3531}(2248,·)$, $\chi_{3531}(1283,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3909299921} a^{6} - \frac{243117134}{3909299921} a^{5} + \frac{480}{3909299921} a^{4} + \frac{485644425}{3909299921} a^{3} + \frac{57600}{3909299921} a^{2} - \frac{241445210}{3909299921} a + \frac{1024000}{3909299921}$, $\frac{1}{3909299921} a^{7} + \frac{560}{3909299921} a^{5} - \frac{97128885}{3909299921} a^{4} + \frac{89600}{3909299921} a^{3} + \frac{193156168}{3909299921} a^{2} + \frac{3584000}{3909299921} a - \frac{92353122}{3909299921}$, $\frac{1}{3909299921} a^{8} - \frac{777031080}{3909299921} a^{5} - \frac{179200}{3909299921} a^{4} + \frac{1883272638}{3909299921} a^{3} - \frac{28672000}{3909299921} a^{2} - \frac{1708532757}{3909299921} a - \frac{573440000}{3909299921}$, $\frac{1}{3909299921} a^{9} - \frac{230400}{3909299921} a^{5} - \frac{434601378}{3909299921} a^{4} - \frac{49152000}{3909299921} a^{3} + \frac{1616179635}{3909299921} a^{2} + \frac{1697459921}{3909299921} a + \frac{466499265}{3909299921}$
Class group and class number
$C_{22}\times C_{6248}$, which has order $137456$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-3531}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $107$ | 107.10.5.2 | $x^{10} - 131079601 x^{2} + 126229655763$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |