Normalized defining polynomial
\( x^{10} - 3 x^{9} + 639 x^{8} - 1528 x^{7} + 165130 x^{6} - 295192 x^{5} + 21565956 x^{4} - 25629177 x^{3} + 1423305119 x^{2} - 843631625 x + 37979471531 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7765646666851839321875=-\,5^{5}\cdot 11^{8}\cdot 103^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $154.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(5665=5\cdot 11\cdot 103\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{5665}(1,·)$, $\chi_{5665}(1544,·)$, $\chi_{5665}(2061,·)$, $\chi_{5665}(3089,·)$, $\chi_{5665}(3606,·)$, $\chi_{5665}(4119,·)$, $\chi_{5665}(4634,·)$, $\chi_{5665}(4636,·)$, $\chi_{5665}(5149,·)$, $\chi_{5665}(5151,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{1428540408436301609354919971} a^{9} + \frac{647324543820419193857861790}{1428540408436301609354919971} a^{8} - \frac{160313288485864994968371930}{1428540408436301609354919971} a^{7} + \frac{444118911821256906694960420}{1428540408436301609354919971} a^{6} - \frac{234300353001028954448971353}{1428540408436301609354919971} a^{5} - \frac{364946454842418105817116520}{1428540408436301609354919971} a^{4} - \frac{277029094552111906181053387}{1428540408436301609354919971} a^{3} + \frac{688074863414382361429047397}{1428540408436301609354919971} a^{2} + \frac{709960556982747428714381714}{1428540408436301609354919971} a - \frac{423940706198493759070536419}{1428540408436301609354919971}$
Class group and class number
$C_{130506}$, which has order $130506$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-515}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| $103$ | 103.10.5.1 | $x^{10} - 21218 x^{6} + 112550881 x^{2} - 3756048000732$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |