Normalized defining polynomial
\( x^{10} + 4510 x^{8} - 266090 x^{7} + 21057190 x^{6} - 599153951 x^{5} + 14466896125 x^{4} - 87476668070 x^{3} + 397271646145 x^{2} - 630321392910 x + 772639242001 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-63465642057324252347571258544921875=-\,3^{5}\cdot 5^{16}\cdot 11^{8}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3021.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(33825=3\cdot 5^{2}\cdot 11\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{33825}(1,·)$, $\chi_{33825}(4321,·)$, $\chi_{33825}(4711,·)$, $\chi_{33825}(4856,·)$, $\chi_{33825}(10916,·)$, $\chi_{33825}(11276,·)$, $\chi_{33825}(15596,·)$, $\chi_{33825}(15986,·)$, $\chi_{33825}(27406,·)$, $\chi_{33825}(33466,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{4059} a^{5} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{36531} a^{6} - \frac{2}{36531} a^{5} + \frac{11}{81} a^{4} + \frac{4}{81} a^{3} - \frac{40}{81} a^{2} + \frac{37}{81} a + \frac{34}{81}$, $\frac{1}{2447577} a^{7} - \frac{4}{2447577} a^{6} - \frac{100}{815859} a^{5} - \frac{53}{603} a^{4} + \frac{146}{1809} a^{3} + \frac{250}{603} a^{2} + \frac{770}{5427} a - \frac{932}{5427}$, $\frac{1}{374479281} a^{8} - \frac{1}{5589243} a^{7} - \frac{3599}{374479281} a^{6} - \frac{22697}{374479281} a^{5} + \frac{34844}{830331} a^{4} + \frac{40048}{830331} a^{3} + \frac{120454}{830331} a^{2} + \frac{256949}{830331} a - \frac{403919}{830331}$, $\frac{1}{527595435506311309096332565401} a^{9} + \frac{166643205795919838}{270700582609703083168975149} a^{8} - \frac{27966792504655378254853}{527595435506311309096332565401} a^{7} + \frac{1723170609267356357599298}{175865145168770436365444188467} a^{6} + \frac{38405668705592673734100883}{527595435506311309096332565401} a^{5} + \frac{188350417974043060511707364}{1169834668528406450324462451} a^{4} - \frac{27180425509185690490965070}{389944889509468816774820817} a^{3} + \frac{344781279634033233799747234}{1169834668528406450324462451} a^{2} - \frac{11396303372696614497628367}{68813804031082732372027203} a - \frac{171959491627397255477249}{600223021307545638955599}$
Class group and class number
$C_{4}\times C_{4}\times C_{20}\times C_{739420}$, which has order $236614400$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{842859542338400}{383148464419979164194867513} a^{9} + \frac{59376545330}{17871564178365556424967} a^{8} + \frac{3808193113781160700}{383148464419979164194867513} a^{7} - \frac{72832418160663815710}{127716154806659721398289171} a^{6} + \frac{17441479959103600408337}{383148464419979164194867513} a^{5} - \frac{1063981823929090776200}{849553136186206572494163} a^{4} + \frac{8551282231692146735450}{283184378728735524164721} a^{3} - \frac{130294282845721803197365}{849553136186206572494163} a^{2} + \frac{704257403252812850725630}{849553136186206572494163} a - \frac{137410773951270133513}{435891809228428205487} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1487469.5436229876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.16160924531640625.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.10.16.9 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 70 x^{5} + 5 x^{4} - 45 x^{3} - 20 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ |
| $11$ | 11.10.8.4 | $x^{10} - 781 x^{5} + 290521$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| $41$ | 41.10.8.3 | $x^{10} + 943 x^{5} + 242064$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |