Properties

Label 10.0.63348362415...2799.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,13^{5}\cdot 443^{5}$
Root discriminant $75.89$
Ramified primes $13, 443$
Class number $1188$ (GRH)
Class group $[1188]$ (GRH)
Galois group $D_{10}$ (as 10T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![212800, 39504, 90928, 11524, 11444, -1355, 798, 93, -7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 - 7*x^8 + 93*x^7 + 798*x^6 - 1355*x^5 + 11444*x^4 + 11524*x^3 + 90928*x^2 + 39504*x + 212800)
 
gp: K = bnfinit(x^10 - 2*x^9 - 7*x^8 + 93*x^7 + 798*x^6 - 1355*x^5 + 11444*x^4 + 11524*x^3 + 90928*x^2 + 39504*x + 212800, 1)
 

Normalized defining polynomial

\( x^{10} - 2 x^{9} - 7 x^{8} + 93 x^{7} + 798 x^{6} - 1355 x^{5} + 11444 x^{4} + 11524 x^{3} + 90928 x^{2} + 39504 x + 212800 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-6334836241526812799=-\,13^{5}\cdot 443^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $75.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 443$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{12} a^{6} - \frac{1}{12} a^{5} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} + \frac{1}{4} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{5} - \frac{1}{4} a^{4} + \frac{1}{3} a^{3} + \frac{1}{4} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{2640} a^{8} + \frac{1}{44} a^{7} - \frac{59}{2640} a^{6} - \frac{41}{528} a^{5} + \frac{79}{660} a^{4} + \frac{419}{880} a^{3} + \frac{1}{40} a^{2} - \frac{89}{220} a + \frac{2}{33}$, $\frac{1}{9439148798793120} a^{9} - \frac{47935075803}{393297866616380} a^{8} + \frac{47372035662887}{3146382932931040} a^{7} + \frac{198319128692063}{9439148798793120} a^{6} - \frac{427312557343}{196648933308190} a^{5} - \frac{239695093626155}{1887829759758624} a^{4} - \frac{1625751365777329}{4719574399396560} a^{3} + \frac{32932354102423}{471957439939656} a^{2} - \frac{17738831553713}{196648933308190} a + \frac{7145762275651}{19664893330819}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{1188}$, which has order $1188$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2844.4666616495383 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{10}$ (as 10T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 20
The 8 conjugacy class representatives for $D_{10}$
Character table for $D_{10}$

Intermediate fields

\(\Q(\sqrt{-5759}) \), 5.1.196249.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 10 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }$ ${\href{/LocalNumberField/41.10.0.1}{10} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.10.5.1$x^{10} - 676 x^{6} + 114244 x^{2} - 13366548$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
443Data not computed