Normalized defining polynomial
\( x^{10} - 3 x^{9} - 200 x^{8} + 50 x^{7} + 17637 x^{6} + 39445 x^{5} - 111526 x^{4} - 277572 x^{3} + 13054024 x^{2} + 41505856 x + 259861504 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6284601413776876558534375=-\,5^{5}\cdot 11^{9}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $301.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1705=5\cdot 11\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1705}(1,·)$, $\chi_{1705}(1349,·)$, $\chi_{1705}(39,·)$, $\chi_{1705}(714,·)$, $\chi_{1705}(1614,·)$, $\chi_{1705}(1521,·)$, $\chi_{1705}(1461,·)$, $\chi_{1705}(566,·)$, $\chi_{1705}(1399,·)$, $\chi_{1705}(1566,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{1232} a^{5} + \frac{1}{308} a^{4} + \frac{5}{176} a^{3} - \frac{37}{308} a^{2} - \frac{127}{308} a - \frac{5}{11}$, $\frac{1}{2464} a^{6} - \frac{1}{2464} a^{5} + \frac{15}{2464} a^{4} + \frac{293}{2464} a^{3} + \frac{29}{308} a^{2} + \frac{3}{56} a - \frac{4}{11}$, $\frac{1}{9856} a^{7} - \frac{1}{9856} a^{6} - \frac{1}{9856} a^{5} - \frac{387}{9856} a^{4} - \frac{195}{1232} a^{3} - \frac{453}{2464} a^{2} + \frac{221}{616} a - \frac{1}{11}$, $\frac{1}{39424} a^{8} - \frac{3}{19712} a^{6} - \frac{1}{2464} a^{5} - \frac{1767}{39424} a^{4} + \frac{59}{2464} a^{3} + \frac{1675}{9856} a^{2} + \frac{615}{1232} a + \frac{1}{11}$, $\frac{1}{20660000023151104} a^{9} - \frac{227483354093}{20660000023151104} a^{8} - \frac{338921888847}{10330000011575552} a^{7} - \frac{1931240779621}{10330000011575552} a^{6} + \frac{6456921055297}{20660000023151104} a^{5} - \frac{108567965229389}{20660000023151104} a^{4} - \frac{994354442548305}{5165000005787776} a^{3} + \frac{841579324771233}{5165000005787776} a^{2} + \frac{20376549499991}{92232142960496} a - \frac{208066306871}{823501276433}$
Class group and class number
$C_{5}\times C_{323020}$, which has order $1615100$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 254846.18150922793 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-55}) \), 5.5.13521270961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $31$ | 31.5.4.3 | $x^{5} - 1519$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.3 | $x^{5} - 1519$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |