Properties

Label 10.0.62234809305...6875.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,5^{5}\cdot 11^{9}\cdot 61^{5}$
Root discriminant $151.15$
Ramified primes $5, 11, 61$
Class number $131848$ (GRH)
Class group $[2, 65924]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29759754949, -1868975813, 1868975813, -34056133, 34056133, -254981, 254981, -837, 837, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + 837*x^8 - 837*x^7 + 254981*x^6 - 254981*x^5 + 34056133*x^4 - 34056133*x^3 + 1868975813*x^2 - 1868975813*x + 29759754949)
 
gp: K = bnfinit(x^10 - x^9 + 837*x^8 - 837*x^7 + 254981*x^6 - 254981*x^5 + 34056133*x^4 - 34056133*x^3 + 1868975813*x^2 - 1868975813*x + 29759754949, 1)
 

Normalized defining polynomial

\( x^{10} - x^{9} + 837 x^{8} - 837 x^{7} + 254981 x^{6} - 254981 x^{5} + 34056133 x^{4} - 34056133 x^{3} + 1868975813 x^{2} - 1868975813 x + 29759754949 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-6223480930531534346875=-\,5^{5}\cdot 11^{9}\cdot 61^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $151.15$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3355=5\cdot 11\cdot 61\)
Dirichlet character group:    $\lbrace$$\chi_{3355}(1,·)$, $\chi_{3355}(2439,·)$, $\chi_{3355}(1831,·)$, $\chi_{3355}(3049,·)$, $\chi_{3355}(3051,·)$, $\chi_{3355}(304,·)$, $\chi_{3355}(306,·)$, $\chi_{3355}(916,·)$, $\chi_{3355}(1524,·)$, $\chi_{3355}(3354,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3051484589} a^{6} - \frac{199705822}{3051484589} a^{5} + \frac{456}{3051484589} a^{4} + \frac{398902365}{3051484589} a^{3} + \frac{51984}{3051484589} a^{2} - \frac{198266150}{3051484589} a + \frac{877952}{3051484589}$, $\frac{1}{3051484589} a^{7} + \frac{532}{3051484589} a^{5} - \frac{79780473}{3051484589} a^{4} + \frac{80864}{3051484589} a^{3} + \frac{158612920}{3051484589} a^{2} + \frac{3072832}{3051484589} a - \frac{75678218}{3051484589}$, $\frac{1}{3051484589} a^{8} - \frac{638243784}{3051484589} a^{5} - \frac{161728}{3051484589} a^{4} - \frac{1505008619}{3051484589} a^{3} - \frac{24582656}{3051484589} a^{2} - \frac{1400047033}{3051484589} a - \frac{467070464}{3051484589}$, $\frac{1}{3051484589} a^{9} - \frac{207936}{3051484589} a^{5} - \frac{356879070}{3051484589} a^{4} - \frac{42141696}{3051484589} a^{3} + \frac{1324368815}{3051484589} a^{2} + \frac{1249927085}{3051484589} a + \frac{240087709}{3051484589}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{65924}$, which has order $131848$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-3355}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }$ ${\href{/LocalNumberField/3.10.0.1}{10} }$ R ${\href{/LocalNumberField/7.10.0.1}{10} }$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$61$61.10.5.2$x^{10} - 13845841 x^{2} + 5067577806$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$