Normalized defining polynomial
\( x^{10} - 20x^{8} + 210x^{6} - 340x^{4} + 580x^{2} + 6 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-6000000000000000000\)
\(\medspace = -\,2^{19}\cdot 3\cdot 5^{18}\)
|
| |
| Root discriminant: | \(75.48\) |
| |
| Galois root discriminant: | $2^{53/20}3^{1/2}5^{39/20}\approx 250.77349016221285$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{176131}a^{8}+\frac{83607}{176131}a^{6}-\frac{69508}{176131}a^{4}-\frac{70594}{176131}a^{2}-\frac{5000}{176131}$, $\frac{1}{176131}a^{9}+\frac{83607}{176131}a^{7}-\frac{69508}{176131}a^{5}-\frac{70594}{176131}a^{3}-\frac{5000}{176131}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{9196}{176131}a^{8}-\frac{137974}{176131}a^{6}+\frac{1040617}{176131}a^{4}+\frac{5848765}{176131}a^{2}-\frac{2475643}{176131}$, $\frac{11228}{176131}a^{8}-\frac{567227}{176131}a^{6}+\frac{8631056}{176131}a^{4}-\frac{63975485}{176131}a^{2}-\frac{658735}{176131}$, $\frac{730193}{176131}a^{9}-\frac{2484383}{176131}a^{8}-\frac{7797916}{176131}a^{7}+\frac{36994722}{176131}a^{6}+\frac{11983086}{176131}a^{5}-\frac{62677664}{176131}a^{4}-\frac{20825116}{176131}a^{3}+\frac{115103795}{176131}a^{2}+\frac{6042953}{176131}a+\frac{980749}{176131}$, $\frac{2857232558}{176131}a^{9}-\frac{2179636459}{176131}a^{8}-\frac{57347377053}{176131}a^{7}+\frac{48004884123}{176131}a^{6}+\frac{594370936268}{176131}a^{5}-\frac{531817976435}{176131}a^{4}-\frac{834693953867}{176131}a^{3}+\frac{1392592067940}{176131}a^{2}-\frac{8645934611}{176131}a+\frac{14375512973}{176131}$
|
| |
| Regulator: | \( 650113.206633 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 650113.206633 \cdot 1}{2\cdot\sqrt{6000000000000000000}}\cr\approx \mathstrut & 1.29951922700 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr F_5$ (as 10T29):
| A solvable group of order 640 |
| The 22 conjugacy class representatives for $((C_2^4 : C_5):C_4)\times C_2$ |
| Character table for $((C_2^4 : C_5):C_4)\times C_2$ |
Intermediate fields
| 5.1.31250000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.5.0.1}{5} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.10.0.1}{10} }$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.10.19a1.32 | $x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 10$ | $10$ | $1$ | $19$ | $((C_2^4 : C_5):C_4)\times C_2$ | $$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$$ |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(5\)
| 5.1.5.9a1.4 | $x^{5} + 75 x + 5$ | $5$ | $1$ | $9$ | $F_5$ | $$[\frac{9}{4}]_{4}$$ |
| 5.1.5.9a1.4 | $x^{5} + 75 x + 5$ | $5$ | $1$ | $9$ | $F_5$ | $$[\frac{9}{4}]_{4}$$ |