Normalized defining polynomial
\( x^{10} - 3 x^{9} + 234 x^{8} - 556 x^{7} + 22570 x^{6} - 39880 x^{5} + 1119450 x^{4} - 1309413 x^{3} + 28539794 x^{2} - 16586309 x + 299407151 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-54488934738121076831=-\,11^{8}\cdot 191^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2101=11\cdot 191\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2101}(192,·)$, $\chi_{2101}(1,·)$, $\chi_{2101}(763,·)$, $\chi_{2101}(1336,·)$, $\chi_{2101}(1527,·)$, $\chi_{2101}(1720,·)$, $\chi_{2101}(1145,·)$, $\chi_{2101}(1147,·)$, $\chi_{2101}(190,·)$, $\chi_{2101}(383,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{23} a^{8} - \frac{5}{23} a^{7} - \frac{6}{23} a^{6} - \frac{7}{23} a^{5} + \frac{3}{23} a^{4} - \frac{2}{23} a^{3} + \frac{7}{23} a^{2} + \frac{3}{23} a + \frac{6}{23}$, $\frac{1}{3520686873344667170497} a^{9} + \frac{29902136141868047619}{3520686873344667170497} a^{8} + \frac{588619929232423371913}{3520686873344667170497} a^{7} - \frac{1594584567815444278768}{3520686873344667170497} a^{6} - \frac{1333630460428136881667}{3520686873344667170497} a^{5} - \frac{152580014310458454864}{3520686873344667170497} a^{4} + \frac{304349750215265818997}{3520686873344667170497} a^{3} - \frac{33899652132188751799}{81876438914992259779} a^{2} - \frac{772774675637899821527}{3520686873344667170497} a - \frac{5907675857760066281}{81876438914992259779}$
Class group and class number
$C_{17953}$, which has order $17953$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-191}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| $191$ | 191.10.5.2 | $x^{10} - 1330863361 x^{2} + 4321313333167$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |