Properties

Label 10.0.54488934738...6831.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,11^{8}\cdot 191^{5}$
Root discriminant $94.11$
Ramified primes $11, 191$
Class number $17953$ (GRH)
Class group $[17953]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![299407151, -16586309, 28539794, -1309413, 1119450, -39880, 22570, -556, 234, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 234*x^8 - 556*x^7 + 22570*x^6 - 39880*x^5 + 1119450*x^4 - 1309413*x^3 + 28539794*x^2 - 16586309*x + 299407151)
 
gp: K = bnfinit(x^10 - 3*x^9 + 234*x^8 - 556*x^7 + 22570*x^6 - 39880*x^5 + 1119450*x^4 - 1309413*x^3 + 28539794*x^2 - 16586309*x + 299407151, 1)
 

Normalized defining polynomial

\( x^{10} - 3 x^{9} + 234 x^{8} - 556 x^{7} + 22570 x^{6} - 39880 x^{5} + 1119450 x^{4} - 1309413 x^{3} + 28539794 x^{2} - 16586309 x + 299407151 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-54488934738121076831=-\,11^{8}\cdot 191^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $94.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 191$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2101=11\cdot 191\)
Dirichlet character group:    $\lbrace$$\chi_{2101}(192,·)$, $\chi_{2101}(1,·)$, $\chi_{2101}(763,·)$, $\chi_{2101}(1336,·)$, $\chi_{2101}(1527,·)$, $\chi_{2101}(1720,·)$, $\chi_{2101}(1145,·)$, $\chi_{2101}(1147,·)$, $\chi_{2101}(190,·)$, $\chi_{2101}(383,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{23} a^{8} - \frac{5}{23} a^{7} - \frac{6}{23} a^{6} - \frac{7}{23} a^{5} + \frac{3}{23} a^{4} - \frac{2}{23} a^{3} + \frac{7}{23} a^{2} + \frac{3}{23} a + \frac{6}{23}$, $\frac{1}{3520686873344667170497} a^{9} + \frac{29902136141868047619}{3520686873344667170497} a^{8} + \frac{588619929232423371913}{3520686873344667170497} a^{7} - \frac{1594584567815444278768}{3520686873344667170497} a^{6} - \frac{1333630460428136881667}{3520686873344667170497} a^{5} - \frac{152580014310458454864}{3520686873344667170497} a^{4} + \frac{304349750215265818997}{3520686873344667170497} a^{3} - \frac{33899652132188751799}{81876438914992259779} a^{2} - \frac{772774675637899821527}{3520686873344667170497} a - \frac{5907675857760066281}{81876438914992259779}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{17953}$, which has order $17953$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-191}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.10.0.1}{10} }$ ${\href{/LocalNumberField/41.10.0.1}{10} }$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$191$191.10.5.2$x^{10} - 1330863361 x^{2} + 4321313333167$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$