Normalized defining polynomial
\( x^{10} + 110 x^{8} - 30 x^{7} + 2825 x^{6} - 2491 x^{5} + 15100 x^{4} + 8495 x^{3} + 29515 x^{2} + 65125 x + 180299 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4910540008544921875=-\,5^{17}\cdot 23^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(575=5^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{575}(1,·)$, $\chi_{575}(229,·)$, $\chi_{575}(231,·)$, $\chi_{575}(459,·)$, $\chi_{575}(461,·)$, $\chi_{575}(114,·)$, $\chi_{575}(116,·)$, $\chi_{575}(344,·)$, $\chi_{575}(346,·)$, $\chi_{575}(574,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{607571227241679638693} a^{9} - \frac{25733463491588729024}{607571227241679638693} a^{8} - \frac{23424771816904609250}{607571227241679638693} a^{7} - \frac{1438121826456228872}{86795889605954234099} a^{6} + \frac{1662772847560797724}{86795889605954234099} a^{5} + \frac{32379483909128976295}{86795889605954234099} a^{4} - \frac{44536699724724636528}{607571227241679638693} a^{3} + \frac{518144839580374696}{5678235768613828399} a^{2} - \frac{177567096909525414986}{607571227241679638693} a - \frac{4722885561371438329}{86795889605954234099}$
Class group and class number
$C_{1822}$, which has order $1822$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 257.113789169 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-115}) \), 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| $23$ | 23.10.5.1 | $x^{10} - 1058 x^{6} + 279841 x^{2} - 25745372$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |