Normalized defining polynomial
\( x^{10} - 5 x^{9} + 30 x^{8} - 80 x^{7} + 520 x^{6} - 1494 x^{5} + 8050 x^{4} - 18165 x^{3} + 65760 x^{2} - 73895 x + 192493 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4368461761474609375=-\,5^{16}\cdot 31^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(775=5^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{775}(1,·)$, $\chi_{775}(681,·)$, $\chi_{775}(621,·)$, $\chi_{775}(526,·)$, $\chi_{775}(466,·)$, $\chi_{775}(371,·)$, $\chi_{775}(311,·)$, $\chi_{775}(216,·)$, $\chi_{775}(156,·)$, $\chi_{775}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{49} a^{8} + \frac{2}{49} a^{7} + \frac{3}{49} a^{6} + \frac{6}{49} a^{5} - \frac{2}{49} a^{4} + \frac{10}{49} a^{3} + \frac{19}{49} a^{2} - \frac{18}{49} a - \frac{3}{7}$, $\frac{1}{211902445704299} a^{9} + \frac{2116478523456}{211902445704299} a^{8} - \frac{14134110260132}{211902445704299} a^{7} + \frac{6972340283729}{211902445704299} a^{6} - \frac{3219402592479}{211902445704299} a^{5} + \frac{45893284703092}{211902445704299} a^{4} + \frac{74433258485657}{211902445704299} a^{3} - \frac{9547257663971}{211902445704299} a^{2} + \frac{32184323327530}{211902445704299} a + \frac{7640448223867}{30271777957757}$
Class group and class number
$C_{1965}$, which has order $1965$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 257.113789169 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $31$ | 31.10.5.2 | $x^{10} - 923521 x^{2} + 286291510$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |