Normalized defining polynomial
\( x^{10} - 5 x^{9} - 90 x^{8} - 50 x^{7} + 11105 x^{6} + 29011 x^{5} + 251560 x^{4} + 1396580 x^{3} + 21008400 x^{2} + 38261440 x + 533780224 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-404948281009841156005859375=-\,5^{17}\cdot 11^{8}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $457.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(5225=5^{2}\cdot 11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{5225}(1,·)$, $\chi_{5225}(379,·)$, $\chi_{5225}(474,·)$, $\chi_{5225}(664,·)$, $\chi_{5225}(856,·)$, $\chi_{5225}(1236,·)$, $\chi_{5225}(1996,·)$, $\chi_{5225}(2566,·)$, $\chi_{5225}(3419,·)$, $\chi_{5225}(4084,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{200} a^{5} + \frac{1}{20} a^{4} - \frac{9}{40} a^{3} - \frac{1}{4} a^{2} - \frac{3}{10} a - \frac{4}{25}$, $\frac{1}{800} a^{6} - \frac{1}{800} a^{5} - \frac{1}{160} a^{4} - \frac{31}{160} a^{3} + \frac{7}{40} a^{2} + \frac{57}{200} a - \frac{3}{50}$, $\frac{1}{800} a^{7} - \frac{1}{400} a^{5} - \frac{1}{40} a^{4} + \frac{1}{160} a^{3} + \frac{17}{200} a^{2} - \frac{13}{40} a - \frac{11}{50}$, $\frac{1}{121600} a^{8} - \frac{17}{30400} a^{7} + \frac{31}{60800} a^{6} - \frac{3}{1600} a^{5} - \frac{1151}{24320} a^{4} + \frac{2701}{15200} a^{3} - \frac{6681}{30400} a^{2} + \frac{87}{200} a + \frac{41}{100}$, $\frac{1}{189878810303206400} a^{9} + \frac{195996035819}{189878810303206400} a^{8} - \frac{17088363432363}{94939405151603200} a^{7} + \frac{6726538651727}{94939405151603200} a^{6} + \frac{459134636534201}{189878810303206400} a^{5} - \frac{10306273302937517}{189878810303206400} a^{4} - \frac{7142223987551337}{47469702575801600} a^{3} - \frac{11309686073976567}{47469702575801600} a^{2} - \frac{21472748652799}{78075168710200} a + \frac{37590557020173}{156150337420400}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}\times C_{10}\times C_{18040}$, which has order $7216000$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 135613.65526477623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-95}) \), 5.5.5719140625.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.17.5 | $x^{10} - 5 x^{8} + 55$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |