Normalized defining polynomial
\( x^{10} - x^{9} + 760 x^{8} - 760 x^{7} + 210244 x^{6} - 210244 x^{5} + 25505437 x^{4} - 25505437 x^{3} + 1272197092 x^{2} - 1272197092 x + 18476541931 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3845324648167853062487=-\,11^{9}\cdot 277^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3047=11\cdot 277\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3047}(1,·)$, $\chi_{3047}(3046,·)$, $\chi_{3047}(555,·)$, $\chi_{3047}(2769,·)$, $\chi_{3047}(1938,·)$, $\chi_{3047}(1107,·)$, $\chi_{3047}(1940,·)$, $\chi_{3047}(1109,·)$, $\chi_{3047}(278,·)$, $\chi_{3047}(2492,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{1915669909} a^{6} - \frac{138017678}{1915669909} a^{5} + \frac{414}{1915669909} a^{4} + \frac{275648815}{1915669909} a^{3} + \frac{42849}{1915669909} a^{2} - \frac{136930855}{1915669909} a + \frac{657018}{1915669909}$, $\frac{1}{1915669909} a^{7} + \frac{483}{1915669909} a^{5} - \frac{55129763}{1915669909} a^{4} + \frac{66654}{1915669909} a^{3} + \frac{109544684}{1915669909} a^{2} + \frac{2299563}{1915669909} a - \frac{52048220}{1915669909}$, $\frac{1}{1915669909} a^{8} - \frac{441038104}{1915669909} a^{5} - \frac{133308}{1915669909} a^{4} - \frac{847609240}{1915669909} a^{3} - \frac{18396504}{1915669909} a^{2} + \frac{952777839}{1915669909} a - \frac{317339694}{1915669909}$, $\frac{1}{1915669909} a^{9} - \frac{171396}{1915669909} a^{5} - \frac{246475539}{1915669909} a^{4} - \frac{31536864}{1915669909} a^{3} + \frac{910843850}{1915669909} a^{2} + \frac{691645375}{1915669909} a - \frac{4431195}{1915669909}$
Class group and class number
$C_{178258}$, which has order $178258$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-3047}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 277 | Data not computed | ||||||