Normalized defining polynomial
\( x^{10} - 3 x^{9} + 554 x^{8} - 1324 x^{7} + 124330 x^{6} - 222024 x^{5} + 14123866 x^{4} - 16760549 x^{3} + 812086354 x^{2} - 480472389 x + 18909114223 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3825419760558518179167=-\,3^{5}\cdot 11^{8}\cdot 149^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4917=3\cdot 11\cdot 149\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4917}(1,·)$, $\chi_{4917}(1340,·)$, $\chi_{4917}(3128,·)$, $\chi_{4917}(4469,·)$, $\chi_{4917}(4471,·)$, $\chi_{4917}(4024,·)$, $\chi_{4917}(2234,·)$, $\chi_{4917}(1787,·)$, $\chi_{4917}(2236,·)$, $\chi_{4917}(895,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{351113571294499826191776343} a^{9} + \frac{79381611977159155032704002}{351113571294499826191776343} a^{8} + \frac{161678439726817613696069091}{351113571294499826191776343} a^{7} + \frac{157396866139341345357168846}{351113571294499826191776343} a^{6} + \frac{105553275226408999877565527}{351113571294499826191776343} a^{5} - \frac{5970040137412840958305112}{351113571294499826191776343} a^{4} - \frac{111720920287203197850485428}{351113571294499826191776343} a^{3} + \frac{85131981437908255122579722}{351113571294499826191776343} a^{2} - \frac{155277684022854601688901917}{351113571294499826191776343} a + \frac{5777744925842917824499285}{15265807447586948964859841}$
Class group and class number
$C_{149870}$, which has order $149870$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-447}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $149$ | 149.10.5.2 | $x^{10} - 492884401 x^{2} + 954717084737$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |