Normalized defining polynomial
\( x^{10} + 10x^{8} - 10x^{7} + 90x^{6} - 49x^{5} + 125x^{4} + 70x^{3} + 95x^{2} + 10x + 1 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-37078857421875\)
\(\medspace = -\,3^{5}\cdot 5^{16}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(22.75\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{8/5}\approx 22.746398023598275$ | ||
Ramified primes: |
\(3\), \(5\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Gal(K/\Q) }$: | $10$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(75=3\cdot 5^{2}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{75}(1,·)$, $\chi_{75}(71,·)$, $\chi_{75}(41,·)$, $\chi_{75}(11,·)$, $\chi_{75}(46,·)$, $\chi_{75}(16,·)$, $\chi_{75}(56,·)$, $\chi_{75}(26,·)$, $\chi_{75}(61,·)$, $\chi_{75}(31,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-3}) \), 10.0.37078857421875.1$^{15}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7}a^{6}-\frac{1}{7}$, $\frac{1}{7}a^{7}-\frac{1}{7}a$, $\frac{1}{7}a^{8}-\frac{1}{7}a^{2}$, $\frac{1}{1530907}a^{9}+\frac{897}{1530907}a^{8}-\frac{70185}{1530907}a^{7}+\frac{29933}{1530907}a^{6}-\frac{7176}{218701}a^{5}-\frac{94550}{218701}a^{4}+\frac{312591}{1530907}a^{3}+\frac{238216}{1530907}a^{2}+\frac{227671}{1530907}a+\frac{391565}{1530907}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $7$ |
Class group and class number
$C_{11}$, which has order $11$
Relative class number: $11$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{153600}{1530907} a^{9} - \frac{2430}{1530907} a^{8} + \frac{1543300}{1530907} a^{7} - \frac{1573230}{1530907} a^{6} + \frac{1987749}{218701} a^{5} - \frac{1133600}{218701} a^{4} + \frac{20043150}{1530907} a^{3} + \frac{8954835}{1530907} a^{2} + \frac{15284770}{1530907} a + \frac{1609000}{1530907} \)
(order $6$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{28218}{1530907}a^{9}-\frac{57770}{1530907}a^{8}+\frac{294627}{1530907}a^{7}-\frac{848672}{1530907}a^{6}+\frac{462160}{218701}a^{5}-\frac{953205}{218701}a^{4}+\frac{7261239}{1530907}a^{3}-\frac{5482373}{1530907}a^{2}-\frac{577700}{1530907}a-\frac{5060875}{1530907}$, $\frac{3441}{218701}a^{9}-\frac{6480}{218701}a^{8}+\frac{33048}{218701}a^{7}-\frac{102447}{218701}a^{6}+\frac{51840}{31243}a^{5}-\frac{106920}{31243}a^{4}+\frac{710216}{218701}a^{3}-\frac{614952}{218701}a^{2}-\frac{64800}{218701}a-\frac{166668}{218701}$, $\frac{23348}{1530907}a^{9}-\frac{52140}{1530907}a^{8}+\frac{265914}{1530907}a^{7}-\frac{748815}{1530907}a^{6}+\frac{417120}{218701}a^{5}-\frac{860310}{218701}a^{4}+\frac{8195534}{1530907}a^{3}-\frac{4948086}{1530907}a^{2}-\frac{521400}{1530907}a+\frac{2744830}{1530907}$, $\frac{210631}{1530907}a^{9}-\frac{21657}{1530907}a^{8}+\frac{2144370}{1530907}a^{7}-\frac{2300416}{1530907}a^{6}+\frac{2797668}{218701}a^{5}-\frac{1778897}{218701}a^{4}+\frac{30724805}{1530907}a^{3}+\frac{11569823}{1530907}a^{2}+\frac{23621839}{1530907}a+\frac{2486910}{1530907}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 257.113789169 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 257.113789169 \cdot 11}{6\cdot\sqrt{37078857421875}}\cr\approx \mathstrut & 0.758058939924 \end{aligned}\]
Galois group
A cyclic group of order 10 |
The 10 conjugacy class representatives for $C_{10}$ |
Character table for $C_{10}$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | R | R | ${\href{/padicField/7.1.0.1}{1} }^{10}$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.5.0.1}{5} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.10.0.1}{10} }$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }$ | ${\href{/padicField/43.1.0.1}{1} }^{10}$ | ${\href{/padicField/47.10.0.1}{10} }$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.10.5.2 | $x^{10} + 15 x^{8} + 94 x^{6} + 2 x^{5} + 210 x^{4} - 60 x^{3} + 229 x^{2} + 94 x + 364$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
\(5\)
| 5.10.16.7 | $x^{10} + 40 x^{9} + 400 x^{8} + 10 x^{5} + 200 x^{4} - 1225$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.25.5t1.a.c | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.75.10t1.a.b | $1$ | $ 3 \cdot 5^{2}$ | 10.0.37078857421875.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.25.5t1.a.a | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.75.10t1.a.c | $1$ | $ 3 \cdot 5^{2}$ | 10.0.37078857421875.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.25.5t1.a.d | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.75.10t1.a.d | $1$ | $ 3 \cdot 5^{2}$ | 10.0.37078857421875.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.25.5t1.a.b | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.75.10t1.a.a | $1$ | $ 3 \cdot 5^{2}$ | 10.0.37078857421875.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |