Normalized defining polynomial
\( x^{10} - x^{9} + 474 x^{8} - 474 x^{7} + 81830 x^{6} - 81830 x^{5} + 6203869 x^{4} - 6203869 x^{3} + 194237924 x^{2} - 194237924 x + 1811330797 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-365396751549062507263=-\,11^{9}\cdot 173^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1903=11\cdot 173\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1903}(864,·)$, $\chi_{1903}(1,·)$, $\chi_{1903}(1731,·)$, $\chi_{1903}(1383,·)$, $\chi_{1903}(520,·)$, $\chi_{1903}(172,·)$, $\chi_{1903}(174,·)$, $\chi_{1903}(1039,·)$, $\chi_{1903}(1902,·)$, $\chi_{1903}(1729,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{201125363} a^{6} - \frac{23171596}{201125363} a^{5} + \frac{258}{201125363} a^{4} + \frac{46240935}{201125363} a^{3} + \frac{16641}{201125363} a^{2} - \frac{22893425}{201125363} a + \frac{159014}{201125363}$, $\frac{1}{201125363} a^{7} + \frac{301}{201125363} a^{5} - \frac{9248187}{201125363} a^{4} + \frac{25886}{201125363} a^{3} + \frac{18314740}{201125363} a^{2} + \frac{556549}{201125363} a - \frac{8483816}{201125363}$, $\frac{1}{201125363} a^{8} - \frac{73985496}{201125363} a^{5} - \frac{51772}{201125363} a^{4} - \frac{22556648}{201125363} a^{3} - \frac{4452392}{201125363} a^{2} + \frac{44174767}{201125363} a - \frac{47863214}{201125363}$, $\frac{1}{201125363} a^{9} - \frac{66564}{201125363} a^{5} - \frac{41208165}{201125363} a^{4} - \frac{7632672}{201125363} a^{3} - \frac{52658583}{201125363} a^{2} + \frac{16510109}{201125363} a - \frac{98447741}{201125363}$
Class group and class number
$C_{11}\times C_{3982}$, which has order $43802$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-1903}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $173$ | 173.10.5.2 | $x^{10} - 895745041 x^{2} + 7438266820464$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |