Normalized defining polynomial
\( x^{10} - 4615 x^{7} - 4970 x^{6} + 296354 x^{5} + 13287650 x^{4} + 135006500 x^{3} + 1053034370 x^{2} + 3428920860 x + 3628410199 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34979630064734673309326171875=-\,5^{17}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $715.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1775=5^{2}\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1775}(1,·)$, $\chi_{1775}(196,·)$, $\chi_{1775}(806,·)$, $\chi_{1775}(1761,·)$, $\chi_{1775}(969,·)$, $\chi_{1775}(1579,·)$, $\chi_{1775}(14,·)$, $\chi_{1775}(1774,·)$, $\chi_{1775}(634,·)$, $\chi_{1775}(1141,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{630713415306086363566436398688270921} a^{9} + \frac{150771466646953480298292962087242879}{630713415306086363566436398688270921} a^{8} + \frac{55009991432788797734436422461463769}{630713415306086363566436398688270921} a^{7} + \frac{277493248345594034226887780747060653}{630713415306086363566436398688270921} a^{6} + \frac{84371041428569610011496484864004380}{630713415306086363566436398688270921} a^{5} - \frac{295693486812452418470658044820226444}{630713415306086363566436398688270921} a^{4} - \frac{283954367693788250662528520882010303}{630713415306086363566436398688270921} a^{3} - \frac{53827242563760262605775598503896343}{630713415306086363566436398688270921} a^{2} - \frac{50746652618371703556321869353132088}{630713415306086363566436398688270921} a - \frac{240134277553176076707204961596360623}{630713415306086363566436398688270921}$
Class group and class number
$C_{4}\times C_{16}\times C_{16}\times C_{16}\times C_{80}$, which has order $1310720$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13426.791976539287 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-355}) \), 5.5.9926437890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.17.5 | $x^{10} - 5 x^{8} + 55$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| $71$ | 71.10.9.6 | $x^{10} + 142$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |