Properties

Label 10.0.33212041080...6159.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,11^{9}\cdot 269^{5}$
Root discriminant $141.95$
Ramified primes $11, 269$
Class number $134200$ (GRH)
Class group $[134200]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15983044837, -1131668660, 1131668660, -23357005, 23357005, -198254, 198254, -738, 738, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + 738*x^8 - 738*x^7 + 198254*x^6 - 198254*x^5 + 23357005*x^4 - 23357005*x^3 + 1131668660*x^2 - 1131668660*x + 15983044837)
 
gp: K = bnfinit(x^10 - x^9 + 738*x^8 - 738*x^7 + 198254*x^6 - 198254*x^5 + 23357005*x^4 - 23357005*x^3 + 1131668660*x^2 - 1131668660*x + 15983044837, 1)
 

Normalized defining polynomial

\( x^{10} - x^{9} + 738 x^{8} - 738 x^{7} + 198254 x^{6} - 198254 x^{5} + 23357005 x^{4} - 23357005 x^{3} + 1131668660 x^{2} - 1131668660 x + 15983044837 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-3321204108040761376159=-\,11^{9}\cdot 269^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $141.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 269$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2959=11\cdot 269\)
Dirichlet character group:    $\lbrace$$\chi_{2959}(1344,·)$, $\chi_{2959}(1,·)$, $\chi_{2959}(1346,·)$, $\chi_{2959}(2151,·)$, $\chi_{2959}(808,·)$, $\chi_{2959}(1613,·)$, $\chi_{2959}(2958,·)$, $\chi_{2959}(1615,·)$, $\chi_{2959}(1075,·)$, $\chi_{2959}(1884,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{1663044923} a^{6} - \frac{123372340}{1663044923} a^{5} + \frac{402}{1663044923} a^{4} + \frac{246389175}{1663044923} a^{3} + \frac{40401}{1663044923} a^{2} - \frac{122374505}{1663044923} a + \frac{601526}{1663044923}$, $\frac{1}{1663044923} a^{7} + \frac{469}{1663044923} a^{5} - \frac{49277835}{1663044923} a^{4} + \frac{62846}{1663044923} a^{3} + \frac{97899604}{1663044923} a^{2} + \frac{2105341}{1663044923} a - \frac{46453112}{1663044923}$, $\frac{1}{1663044923} a^{8} - \frac{394222680}{1663044923} a^{5} - \frac{125692}{1663044923} a^{4} - \frac{708523784}{1663044923} a^{3} - \frac{16842728}{1663044923} a^{2} + \frac{803662351}{1663044923} a - \frac{282115694}{1663044923}$, $\frac{1}{1663044923} a^{9} - \frac{161604}{1663044923} a^{5} - \frac{220274109}{1663044923} a^{4} - \frac{28873248}{1663044923} a^{3} + \frac{812929460}{1663044923} a^{2} + \frac{574884389}{1663044923} a - \frac{46805813}{1663044923}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{134200}$, which has order $134200$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-2959}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
269Data not computed