Normalized defining polynomial
\( x^{10} - 2 x^{9} - 505 x^{8} - 1552 x^{7} + 76072 x^{6} + 557872 x^{5} - 110392 x^{4} - 666304 x^{3} + 37976784 x^{2} - 47220384 x + 225499504 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-327217385234372376075381080064=-\,2^{15}\cdot 3^{5}\cdot 11^{8}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $894.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(16104=2^{3}\cdot 3\cdot 11\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{16104}(1,·)$, $\chi_{16104}(6341,·)$, $\chi_{16104}(7781,·)$, $\chi_{16104}(9025,·)$, $\chi_{16104}(10013,·)$, $\chi_{16104}(10085,·)$, $\chi_{16104}(10465,·)$, $\chi_{16104}(12697,·)$, $\chi_{16104}(12769,·)$, $\chi_{16104}(13421,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{6} + \frac{1}{16} a^{5} - \frac{1}{32} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{64} a^{7} - \frac{5}{64} a^{5} + \frac{3}{32} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{16} a - \frac{1}{8}$, $\frac{1}{27392} a^{8} - \frac{85}{13696} a^{7} - \frac{407}{27392} a^{6} + \frac{549}{6848} a^{5} + \frac{1125}{13696} a^{4} - \frac{1591}{3424} a^{3} + \frac{1831}{6848} a^{2} + \frac{759}{1712} a + \frac{11}{32}$, $\frac{1}{99297532890098804566528} a^{9} + \frac{42631196552134079}{3103047902815587642704} a^{8} + \frac{39315619638465950445}{99297532890098804566528} a^{7} - \frac{532915051439035904601}{49648766445049402283264} a^{6} - \frac{5500481152427190098555}{49648766445049402283264} a^{5} - \frac{2290936043427313124833}{24824383222524701141632} a^{4} - \frac{7823976281736782319613}{24824383222524701141632} a^{3} - \frac{1815838026869596197207}{12412191611262350570816} a^{2} - \frac{6068226185128749263111}{12412191611262350570816} a + \frac{3771930673437445507}{58000895379730610144}$
Class group and class number
$C_{2}\times C_{10}\times C_{10}\times C_{10}\times C_{710}$, which has order $1420000$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400186.6439256542 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 5.5.202716958081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $61$ | 61.10.8.3 | $x^{10} + 183 x^{5} + 14884$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |