Normalized defining polynomial
\( x^{10} - 3 x^{9} - 514 x^{8} + 3602 x^{7} + 69265 x^{6} - 773019 x^{5} + 1150624 x^{4} + 2918668 x^{3} + 24160144 x^{2} + 11268672 x + 95024896 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31205881617963063819444759375=-\,3^{5}\cdot 5^{5}\cdot 11^{8}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $707.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(10065=3\cdot 5\cdot 11\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{10065}(1,·)$, $\chi_{10065}(691,·)$, $\chi_{10065}(2986,·)$, $\chi_{10065}(3974,·)$, $\chi_{10065}(4426,·)$, $\chi_{10065}(5369,·)$, $\chi_{10065}(6059,·)$, $\chi_{10065}(8354,·)$, $\chi_{10065}(8671,·)$, $\chi_{10065}(9794,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{6} + \frac{1}{32} a^{5} - \frac{1}{32} a^{4} + \frac{3}{32} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{3424} a^{7} + \frac{51}{3424} a^{6} + \frac{193}{3424} a^{5} - \frac{79}{3424} a^{4} - \frac{185}{1712} a^{3} + \frac{77}{856} a^{2} - \frac{31}{428} a - \frac{26}{107}$, $\frac{1}{54784} a^{8} - \frac{1}{13696} a^{7} + \frac{299}{27392} a^{6} + \frac{483}{13696} a^{5} - \frac{2659}{54784} a^{4} - \frac{1029}{6848} a^{3} - \frac{3013}{13696} a^{2} - \frac{161}{856} a - \frac{355}{856}$, $\frac{1}{21286743131564615168} a^{9} - \frac{59087708012695}{21286743131564615168} a^{8} + \frac{370554593211521}{10643371565782307584} a^{7} - \frac{126511294329146603}{10643371565782307584} a^{6} + \frac{1063071695706087737}{21286743131564615168} a^{5} - \frac{512376318520273167}{21286743131564615168} a^{4} + \frac{186219892612161057}{5321685782891153792} a^{3} - \frac{449602412899828545}{5321685782891153792} a^{2} - \frac{9548221342964341}{83151340357674278} a + \frac{64396696626737441}{332605361430697112}$
Class group and class number
$C_{5}\times C_{2763310}$, which has order $13816550$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400186.6439256542 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 5.5.202716958081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{10}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| $61$ | 61.5.4.2 | $x^{5} + 122$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.5.4.2 | $x^{5} + 122$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |