Properties

Label 10.0.29086923458...6267.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,3^{5}\cdot 11^{8}\cdot 89^{5}$
Root discriminant $111.27$
Ramified primes $3, 11, 89$
Class number $31712$ (GRH)
Class group $[2, 2, 2, 2, 1982]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1517115973, -62253189, 106183009, -3574289, 3034156, -78564, 44230, -784, 329, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 329*x^8 - 784*x^7 + 44230*x^6 - 78564*x^5 + 3034156*x^4 - 3574289*x^3 + 106183009*x^2 - 62253189*x + 1517115973)
 
gp: K = bnfinit(x^10 - 3*x^9 + 329*x^8 - 784*x^7 + 44230*x^6 - 78564*x^5 + 3034156*x^4 - 3574289*x^3 + 106183009*x^2 - 62253189*x + 1517115973, 1)
 

Normalized defining polynomial

\( x^{10} - 3 x^{9} + 329 x^{8} - 784 x^{7} + 44230 x^{6} - 78564 x^{5} + 3034156 x^{4} - 3574289 x^{3} + 106183009 x^{2} - 62253189 x + 1517115973 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-290869234586803326267=-\,3^{5}\cdot 11^{8}\cdot 89^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $111.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2937=3\cdot 11\cdot 89\)
Dirichlet character group:    $\lbrace$$\chi_{2937}(1,·)$, $\chi_{2937}(2402,·)$, $\chi_{2937}(1868,·)$, $\chi_{2937}(268,·)$, $\chi_{2937}(2671,·)$, $\chi_{2937}(533,·)$, $\chi_{2937}(1334,·)$, $\chi_{2937}(2135,·)$, $\chi_{2937}(1336,·)$, $\chi_{2937}(2137,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2165885199475151463803803} a^{9} + \frac{639043689759480651874532}{2165885199475151463803803} a^{8} + \frac{609316787137950870648034}{2165885199475151463803803} a^{7} + \frac{300495598305043040380492}{2165885199475151463803803} a^{6} + \frac{405815865764538813810741}{2165885199475151463803803} a^{5} + \frac{1007387596806040784532707}{2165885199475151463803803} a^{4} - \frac{558603190313170636027270}{2165885199475151463803803} a^{3} - \frac{737399282992718480409974}{2165885199475151463803803} a^{2} + \frac{890609622242248406070918}{2165885199475151463803803} a + \frac{684924173021386553679631}{2165885199475151463803803}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1982}$, which has order $31712$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-267}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }$ R ${\href{/LocalNumberField/5.10.0.1}{10} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }$ R ${\href{/LocalNumberField/13.10.0.1}{10} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.10.0.1}{10} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$89$89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$