Properties

Label 10.0.2893579264.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,2^{10}\cdot 41^{4}$
Root discriminant $8.83$
Ramified primes $2, 41$
Class number $1$
Class group Trivial
Galois group $D_5\times C_5$ (as 10T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 4, 2, -2, 6, 1, -2, 4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 + 4*x^8 - 2*x^7 + x^6 + 6*x^5 - 2*x^4 + 2*x^3 + 4*x^2 - 4*x + 1)
 
gp: K = bnfinit(x^10 - 2*x^9 + 4*x^8 - 2*x^7 + x^6 + 6*x^5 - 2*x^4 + 2*x^3 + 4*x^2 - 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{10} - 2 x^{9} + 4 x^{8} - 2 x^{7} + x^{6} + 6 x^{5} - 2 x^{4} + 2 x^{3} + 4 x^{2} - 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2893579264=-\,2^{10}\cdot 41^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $8.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -a^{9} + \frac{4}{3} a^{8} - \frac{8}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - 6 a^{4} - \frac{4}{3} a^{3} - \frac{5}{3} a^{2} - \frac{11}{3} a + \frac{5}{3} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{3} a^{9} + \frac{2}{3} a^{7} + \frac{1}{3} a^{6} + \frac{4}{3} a^{5} + 2 a^{4} + \frac{7}{3} a^{3} + \frac{8}{3} a^{2} + \frac{4}{3} a - 1 \),  \( a \),  \( a^{9} - \frac{4}{3} a^{8} + 3 a^{7} - \frac{1}{3} a^{6} + \frac{4}{3} a^{5} + \frac{16}{3} a^{4} + 2 a^{3} + \frac{7}{3} a^{2} + \frac{11}{3} a - 2 \),  \( \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{2}{3} a^{4} + \frac{2}{3} a^{2} + \frac{4}{3} a + \frac{1}{3} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6.266179797 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_5\times D_5$ (as 10T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 50
The 20 conjugacy class representatives for $D_5\times C_5$
Character table for $D_5\times C_5$

Intermediate fields

\(\Q(\sqrt{-1}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 sibling: data not computed
Degree 25 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ R ${\href{/LocalNumberField/43.10.0.1}{10} }$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
$41$41.5.4.3$x^{5} - 1476$$5$$1$$4$$C_5$$[\ ]_{5}$
41.5.0.1$x^{5} - x + 7$$1$$5$$0$$C_5$$[\ ]^{5}$