Normalized defining polynomial
\( x^{10} - 6765 x^{7} + 696795 x^{6} + 83279856 x^{5} + 3706058675 x^{4} + 94284129720 x^{3} + 1257274742625 x^{2} + 10961015191335 x + 85798288501893 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2872930298891221299684295654296875=-\,5^{16}\cdot 11^{9}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2217.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(11275=5^{2}\cdot 11\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{11275}(1,·)$, $\chi_{11275}(1636,·)$, $\chi_{11275}(4321,·)$, $\chi_{11275}(4711,·)$, $\chi_{11275}(4856,·)$, $\chi_{11275}(6371,·)$, $\chi_{11275}(6816,·)$, $\chi_{11275}(10251,·)$, $\chi_{11275}(10916,·)$, $\chi_{11275}(11006,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{369} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{1107} a^{6} - \frac{1}{1107} a^{5} + \frac{4}{27} a^{4} + \frac{2}{27} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{3321} a^{7} + \frac{1}{3321} a^{6} - \frac{1}{1107} a^{5} - \frac{11}{81} a^{4} + \frac{13}{81} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a$, $\frac{1}{222507} a^{8} - \frac{11}{74169} a^{7} + \frac{86}{222507} a^{6} + \frac{113}{222507} a^{5} - \frac{133}{1809} a^{4} - \frac{7}{5427} a^{3} - \frac{119}{603} a^{2} + \frac{262}{603} a + \frac{26}{67}$, $\frac{1}{49221865047646318294189988977168150461} a^{9} - \frac{53790105246847271323463268360514}{49221865047646318294189988977168150461} a^{8} + \frac{4874065851766940342300133714640690}{49221865047646318294189988977168150461} a^{7} - \frac{11904128407452739763417248617318979}{49221865047646318294189988977168150461} a^{6} + \frac{55337016175454571523952863319669515}{49221865047646318294189988977168150461} a^{5} - \frac{163851312766377310987235484044842634}{1200533293845032153516828999443125621} a^{4} + \frac{64276923421003850868555889702168052}{400177764615010717838942999814375207} a^{3} + \frac{23636725634713526010615942071953508}{133392588205003572612980999938125069} a^{2} - \frac{9137749313648082856831701644399543}{44464196068334524204326999979375023} a - \frac{192783243408696355712561986258174}{548940692201660792646012345424383}$
Class group and class number
$C_{5}\times C_{5}\times C_{6779905}$, which has order $169497625$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1487469.5436229876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 5.5.16160924531640625.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $11$ | 11.10.9.9 | $x^{10} + 297$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $41$ | 41.10.8.3 | $x^{10} + 943 x^{5} + 242064$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |