Properties

Label 10.0.27359046001...6875.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,5^{5}\cdot 11^{9}\cdot 13^{5}$
Root discriminant $69.78$
Ramified primes $5, 11, 13$
Class number $2764$ (GRH)
Class group $[2, 1382]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15465649, -3931313, 3931313, -326833, 326833, -11441, 11441, -177, 177, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + 177*x^8 - 177*x^7 + 11441*x^6 - 11441*x^5 + 326833*x^4 - 326833*x^3 + 3931313*x^2 - 3931313*x + 15465649)
 
gp: K = bnfinit(x^10 - x^9 + 177*x^8 - 177*x^7 + 11441*x^6 - 11441*x^5 + 326833*x^4 - 326833*x^3 + 3931313*x^2 - 3931313*x + 15465649, 1)
 

Normalized defining polynomial

\( x^{10} - x^{9} + 177 x^{8} - 177 x^{7} + 11441 x^{6} - 11441 x^{5} + 326833 x^{4} - 326833 x^{3} + 3931313 x^{2} - 3931313 x + 15465649 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2735904600107696875=-\,5^{5}\cdot 11^{9}\cdot 13^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $69.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(715=5\cdot 11\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{715}(1,·)$, $\chi_{715}(194,·)$, $\chi_{715}(259,·)$, $\chi_{715}(196,·)$, $\chi_{715}(129,·)$, $\chi_{715}(456,·)$, $\chi_{715}(521,·)$, $\chi_{715}(586,·)$, $\chi_{715}(519,·)$, $\chi_{715}(714,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2182289} a^{6} - \frac{665422}{2182289} a^{5} + \frac{96}{2182289} a^{4} - \frac{858824}{2182289} a^{3} + \frac{2304}{2182289} a^{2} - \frac{647450}{2182289} a + \frac{8192}{2182289}$, $\frac{1}{2182289} a^{7} + \frac{112}{2182289} a^{5} - \frac{264693}{2182289} a^{4} + \frac{3584}{2182289} a^{3} + \frac{517960}{2182289} a^{2} + \frac{28672}{2182289} a - \frac{220898}{2182289}$, $\frac{1}{2182289} a^{8} + \frac{64745}{2182289} a^{5} - \frac{7168}{2182289} a^{4} + \frac{685532}{2182289} a^{3} - \frac{229376}{2182289} a^{2} + \frac{277965}{2182289} a - \frac{917504}{2182289}$, $\frac{1}{2182289} a^{9} - \frac{9216}{2182289} a^{5} + \frac{1016879}{2182289} a^{4} - \frac{393216}{2182289} a^{3} - \frac{498863}{2182289} a^{2} + \frac{825634}{2182289} a - \frac{94813}{2182289}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{1382}$, which has order $2764$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-715}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }$ ${\href{/LocalNumberField/3.10.0.1}{10} }$ R ${\href{/LocalNumberField/7.10.0.1}{10} }$ R R ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.5.2$x^{10} - 625 x^{2} + 6250$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$13$13.10.5.1$x^{10} - 676 x^{6} + 114244 x^{2} - 13366548$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$