Normalized defining polynomial
\( x^{10} - x^{9} + 705 x^{8} - 705 x^{7} + 180929 x^{6} - 180929 x^{5} + 20366017 x^{4} - 20366017 x^{3} + 943112897 x^{2} - 943112897 x + 12754272961 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2643624591337105081387=-\,11^{9}\cdot 257^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2827=11\cdot 257\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2827}(1,·)$, $\chi_{2827}(258,·)$, $\chi_{2827}(515,·)$, $\chi_{2827}(1284,·)$, $\chi_{2827}(1543,·)$, $\chi_{2827}(2312,·)$, $\chi_{2827}(2569,·)$, $\chi_{2827}(2314,·)$, $\chi_{2827}(513,·)$, $\chi_{2827}(2826,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{1334690369} a^{6} - \frac{103625998}{1334690369} a^{5} + \frac{384}{1334690369} a^{4} + \frac{206939865}{1334690369} a^{3} + \frac{36864}{1334690369} a^{2} - \frac{102752330}{1334690369} a + \frac{524288}{1334690369}$, $\frac{1}{1334690369} a^{7} + \frac{448}{1334690369} a^{5} - \frac{41387973}{1334690369} a^{4} + \frac{57344}{1334690369} a^{3} + \frac{82201864}{1334690369} a^{2} + \frac{1835008}{1334690369} a - \frac{38921090}{1334690369}$, $\frac{1}{1334690369} a^{8} - \frac{331103784}{1334690369} a^{5} - \frac{114688}{1334690369} a^{4} - \frac{533222195}{1334690369} a^{3} - \frac{14680064}{1334690369} a^{2} + \frac{614650204}{1334690369} a - \frac{234881024}{1334690369}$, $\frac{1}{1334690369} a^{9} - \frac{147456}{1334690369} a^{5} - \frac{184954194}{1334690369} a^{4} - \frac{25165824}{1334690369} a^{3} - \frac{653571294}{1334690369} a^{2} + \frac{428720705}{1334690369} a - \frac{92757455}{1334690369}$
Class group and class number
$C_{146728}$, which has order $146728$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-2827}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 257 | Data not computed | ||||||