Normalized defining polynomial
\( x^{10} - 2 x^{9} + 123 x^{8} - 194 x^{7} + 6464 x^{6} - 7676 x^{5} + 180115 x^{4} - 145054 x^{3} + 2652783 x^{2} - 1100690 x + 16510339 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2608003547238662144=-\,2^{15}\cdot 11^{8}\cdot 13^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1144=2^{3}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1144}(1,·)$, $\chi_{1144}(675,·)$, $\chi_{1144}(521,·)$, $\chi_{1144}(779,·)$, $\chi_{1144}(625,·)$, $\chi_{1144}(467,·)$, $\chi_{1144}(155,·)$, $\chi_{1144}(729,·)$, $\chi_{1144}(313,·)$, $\chi_{1144}(883,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{43} a^{8} - \frac{20}{43} a^{7} - \frac{11}{43} a^{6} - \frac{6}{43} a^{5} + \frac{9}{43} a^{4} - \frac{15}{43} a^{3} - \frac{17}{43} a^{2} + \frac{4}{43} a + \frac{11}{43}$, $\frac{1}{5175550975688627291} a^{9} - \frac{33032105159131743}{5175550975688627291} a^{8} + \frac{34847902381863123}{5175550975688627291} a^{7} + \frac{1936661001413473645}{5175550975688627291} a^{6} - \frac{351900121993008274}{5175550975688627291} a^{5} - \frac{1673018212600315725}{5175550975688627291} a^{4} - \frac{403649297594185429}{5175550975688627291} a^{3} + \frac{609428222705075895}{5175550975688627291} a^{2} - \frac{269226566016585688}{5175550975688627291} a - \frac{1444909904305642506}{5175550975688627291}$
Class group and class number
$C_{1986}$, which has order $1986$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-26}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| $13$ | 13.10.5.2 | $x^{10} - 57122 x^{2} + 2227758$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |