Normalized defining polynomial
\( x^{10} - x^{9} + 474 x^{8} + 54 x^{7} + 109561 x^{6} - 68025 x^{5} + 8870412 x^{4} - 23104764 x^{3} + 157170784 x^{2} - 1045275584 x + 1689938944 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2412342113372980700918909375=-\,5^{5}\cdot 11^{9}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $547.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2255=5\cdot 11\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2255}(256,·)$, $\chi_{2255}(1,·)$, $\chi_{2255}(2114,·)$, $\chi_{2255}(141,·)$, $\chi_{2255}(2254,·)$, $\chi_{2255}(1999,·)$, $\chi_{2255}(16,·)$, $\chi_{2255}(1841,·)$, $\chi_{2255}(414,·)$, $\chi_{2255}(2239,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{7} - \frac{1}{64} a^{6} + \frac{3}{64} a^{5} - \frac{3}{64} a^{4} - \frac{3}{16} a^{3} + \frac{3}{16} a^{2}$, $\frac{1}{256} a^{8} - \frac{1}{128} a^{7} - \frac{1}{32} a^{6} + \frac{3}{128} a^{5} - \frac{13}{256} a^{4} + \frac{7}{64} a^{3} - \frac{7}{64} a^{2} + \frac{1}{16} a$, $\frac{1}{28906056918767185274987320832} a^{9} - \frac{5624705592124123150635993}{3613257114845898159373415104} a^{8} + \frac{54622341342918607207460407}{7226514229691796318746830208} a^{7} + \frac{188156584758275075434804447}{14453028459383592637493660416} a^{6} + \frac{418120757518111870190192087}{28906056918767185274987320832} a^{5} - \frac{732218360582309057812659135}{14453028459383592637493660416} a^{4} - \frac{237263813944157734231329177}{7226514229691796318746830208} a^{3} + \frac{823513191555051025309336227}{3613257114845898159373415104} a^{2} + \frac{341248178013784352835845233}{903314278711474539843353776} a + \frac{17058304822712752023175612}{56457142419467158740209611}$
Class group and class number
$C_{10}\times C_{507100}$, which has order $5071000$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 371368.7529642051 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-2255}) \), 5.5.41371966801.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.10.9.3 | $x^{10} - 891$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $41$ | 41.10.9.9 | $x^{10} + 11477376$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |